

Cryosphere Geophysics and Remote Sensing Lin Liu

Department of Earth and Environmental Sciences

Faculty of Science, The Chinese University of Hong Kong

Email: liulin@cuhk.edu.hk Website: https://cryocuhk.github.io

About myself

- Bachelor degree in geophysics from Wuhan University (2001-05)
- PhD degree, also in geophysics, from University of Colorado at Boulder (2005-11)
- Thompson Postdoc Fellow, Stanford University (2011-13)
- Joined The Chinese University of Hong Kong (CUHK) in 2014
- We use **geophysical**, **remote sensing**, and **deep learning** methods to study changes of the **cryosphere** (frozen part of the Earth system) in a **warming climate**.

The cryosphere is an important part of the global Earth system

Cryosphere Group @ CUHK

We use geophysical, remote sensing, and deep learning methods to study the cryosphere

Recent research projects

Permafrost degradation

Rock glacier kinematics

+ Greening Antarctica, Martian ice-related landforms

Cryosphere Group @ CUHK

We use geophysical, remote sensing, and deep learning methods to study the cryosphere

Greenland contains ice that could raise global sea level by 6 m

Solid earth deforms in response to surface loading

1. Start of Glaciation

Load

Elastic Lithosphere

3. Ice loss causes uplift

Elastic + Visco-elastic (GIA)

Viscous mantle flows back

Viscous Mantle
Glacial Isostatic Adjustment (GIA)

Constraints placed by elastic crustal deformation measurements:

- average over large areas; within ~10 km radius
- provide estimates of present-day mass variability

Greenland GNSS network (GNET): 65 continuous sites mounted on bedrock near ice

KSUT

PAMI

Established by OSU, U of Luxembourg, UNAVCO, Technical U of Denmark (DTU Space), funded by NSF and the Danish Government

All GNSS stations went up due to present-day ice melting

How does meltwater move within & out of ice sheet?

Figure modified from van den Broeke et al., 2009

How does meltwater move within & out of ice sheet? Complex processes poorly studied

Our idea: use vertical loading deformation to infer <u>buffered water storage</u>

- Early summer: meltwater accumulates & gradually migrates towards GNSS -> subsidence
- Late summer: efficient water drainage (through complex pathways) into ocean -> uplift

Common seasonal variability across 22 GNSS sites

Duration of early-summer subsidence gives 'water storage time'

Key take-aways from this work

Bedrock displacement gives a new source of info on buffered water storage within the Greenland Ice Sheet

- Vertical subsidence up to 5 mm, needs careful removal of other nuisance contributors
- Water storage generally peaks in July and gradually decreases thereafter
- Storage duration is about two months, shorter in southeast Greenland
- Can constrain & improve regional climate models, as none considers buffered water, toward better projection

Greenland Ice Sheet cumulative mass change & equivalent sea level contribution

Why I am excited about cryospheric geophysics and remote sensing

- Innovative and combined use of state-of-the-art methods, inc. artificial intelligence
- Study dramatic changes in various cryospheric systems from interdisciplinary perspectives
- High societal impacts: global climate change, sea level rise, etc.

Time for action!

中大率領香港科學家 首次參加中國南極考察

CUHK leads Hong Kong scientists to participate in China's Antarctic expedition

Milestone underscores city's growing contribution to national and global scientific endeavors

China's 41st Antarctic Expedition 2024–2025

Great Wall Members

18 December 2024 – 7 January 2025

中國南極 五大科考站分布

China's Research Stations in Antarctica

Atlantic Ocean

大西洋

Great Wall Station

長城站

(常年科考站)

中極洲 Zhongshan Station
Kunlun Station
崑崙站
(度夏科考站)
「度夏科考站)
Taishan Station

Qinling Station
太平洋 羅斯海
Pacific Ocean Ross Sea (常年科考站)

Zhongshan Member

9 December 2024 – 1 March 2025

Xuelong 2/Ross Sea

Michael Pittman

March-April 2025

Seemly barren land, but we found flouring flora and microbes

Microbial mats & mosses

Exciting Discoveries & Opportunities Await Hong Kong Scientists

- Strengthen collaboration with the **Polar Research Institute of China** and key international partners
- CUHK plans to lead scientific teams to participate in
 - China's 15th Arctic Ocean Scientific Expedition in summer 2025
 - China's 42nd Antarctic Expedition in December 2025
 - Future expeditions
- Our team will develop an **autonomous & intelligent system** by integrating in-situ, remote sensing sensors and AI, towards holistic, continuous, long-term & real-time monitoring of elemental changes land-water-life interface.

What kind of PhD students I am looking for

- A driving curiosity to understand how the Earth system, esp. the cryosphere works
- Self-motivated
- Independent but capable of working in a team
- Willing to tackle challenging problems

What I can offer you

- Share my passion of science & vision about cryosphere, geophysics, remote sensing, deep learning
- Train you as an independent scholar through frontier research projects
- International perspectives and professional network
- Always ready to help
- Looking forward to learning from you

Want to learn more about my research?

- Talk to me and my students this week
- Visit my group website
- Send me an email for any questions

Reference

- Khan, S. A., et al., (2020), Centennial response of Greenland's three largest outlet glaciers, *Nature Communications*, 11, 5718.
- Liu, L., Khan, S. A., van Dam, T., Ma, J. H. Y., and Bevis, M. (2017), Annual variations in GPS-measured vertical displacements near Upernavik Isstrøm (Greenland) and contributions from surface mass loading, *Journal of Geophysical Research: Solid Earth*, 122, 677–691.
- Ran, J., Ditmar, P., Liu, L., Xiao, Y., Klees, R., and Tang, X. (2021), Analysis and mitigation of biases in Greenland ice sheet mass balance trend estimates from GRACE mascon products, *Journal of Geophysical Research: Solid Earth*, 126, e2020JB020880.
- Ran, J., Ditmar, P., van den Broeke, M., Liu, L., ..., and van Dam, T. (2024), Vertical bedrock shifts reveal summer water storage in Greenland ice sheet, *Nature*, 635, 108–113.
- Zhang, B., Yao, Y., Liu, L., and Yang, Y. (2021), Interannual ice mass variations over the Antarctic ice sheet from 2003 to 2017 were linked to El Niño-Southern Oscillation, *Earth and Planetary Science Letters*, 560, 116796.
- And more publications https://cryocuhk.github.io/publications