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Chapter 1

Introduction

1.1 Introduction

There are three required geophysics courses in the University of Colorado geophysics

program:

1. Seismology: seismic waves, earthquakes, earth structure.

2. Geodesy and gravity. (This course.)

3. Heat flow, mantle convection, fluid dynamics, the earth’s magnetic field.

Plate tectonics is the unifying theory for most of modern-day geophysics and, to a

large extent, geology. According to this theory, the earth’s surface is composed of about

twenty disjoint plates which move with respect to each other. This motion is responsible,

directly or indirectly, for most surface features (e.g. ocean basins, mountains, etc.) and

for earthquakes and volcanos.

The driving force for plate tectonics is mantle convection of some sort: the plates are

thermal boundary layers of convective cells in the mantle (over long time periods, the

mantle behaves as a viscous fluid). But the details are not yet well understood. People

have deduced the rate of motion averaged over millions of years by looking at magnetic

anomalies in material on the sea floor. The motion of the plates on a year-to-year time

1



2 CHAPTER 1. INTRODUCTION

scale is just now beginning to be observed. In fact, one of the goals of modern geodesy

is to actually detect the year-to-year motion. Is it the same as the long-term mean? Do

the plates move rigidly? Etc.

1.2 Geodesy

Geodesy has a reasonable claim to being the oldest branch of geophysics. Originally it

was solely concerned with global surveying. Its primary goal was, and probably still is, to

tie local survey nets together by doing careful surveying over long distances. Geodesists

tell local surveyors where their lines are with respect to the rest of the world. That

includes telling them their elevation above sea level. This is still the major function of

most geodesists, most of whom are not geophysicists.

To measure long baselines and to determine global positions you need:

1. more accurate observing instruments than in surveying — although frequently sur-

veyors and geodesists use the same instruments.

2. complicated mathematical techniques to take into account things like the earth’s

curvature and, especially, the gravity field.

3. measurements of the gravity field.

The effects of the gravity field are especially difficult to deal with. Why should gravity

enter in? It’s because many geodetic instruments use gravity as a reference. For example,

when geodesists or surveyors say a surface is horizontal, what they really mean is that

it is a surface of constant gravitational potential (think of the way a carpenter’s level

works, for example). So, geodesists have always had to measure gravity — in addition

to relative positions, which is why gravity has historically come under the heading of

geodesy.

Out of these gravity observations came the first useful, modern, geophysical interpre-

tations of any sort. This was the development of the idea of isostasy around 1840. We’ll

get into this, later.
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Nowadays, what can gravity and point positioning observations do for geophysicists?

Briefly, static gravity observations (that is, observations of the time-independent field)

give information on strength within the earth (the earth’s surface bends under loads, with

resulting effects on gravity), on composition near the earth’s surface (mineral prospectors

use gravity), and on long term dynamical processes within the earth (density contrasts

associated with mantle convection/plate tectonics, and postglacial rebound).

Static (time-independent values) of positions have not given much useful information.

Recently, though, new geodetic techniques have begun to give useful observations of

time-dependent gravity variations and positions of surface points. This turns out to be

really exciting to geophysicists, because it allows people to be able to see the plates move

and deform in real time.

1.3 Course Organization

Chapter 2 Observational techniques

Chapter 3 Potential theory (mathematical theory of gravity)

Chapter 4 Physical geodesy problems (for example, how do you determine the earth’s

shape)

Chapter 5 Stress/strain laws. Viscosity (for use in later interpretation)

Chapter 6 Interpretation of observed gravity anomalies

Chapter 7 Postglacial rebound

Chapter 8 Earth tides

Chapter 9 Earth rotation



4 CHAPTER 1. INTRODUCTION



Chapter 2

Observational Techniques

2.1 Instruments

2.1.1 Gravity meters

These measure g, the acceleration due to gravity. At the earth’s surface,

g ≈ 980 cm/sec2 ≡ 980 gal.

(So, g ≈ 103 gal.)

Surveying and static gravity observations require accuracies of approximately 1 mgal

(10−6 accuracy). To measure changes in gravity you’d like 1 µgal (∼ 10−9) accuracies.

For example, if you move radially outward by 3 mm, gravity decreases (because you are

moving further from the center of the earth) by about 1 µgal.

There are two types of gravimeters:

Absolute meters Where g can be directly determined by measuring a length and/or a

time.

Relative meters Where g depends on things like spring constants, which cannot be so

readily determined. Relative instruments can only tell you the relative difference

in g between two points or between two times.

5



6 CHAPTER 2. OBSERVATIONAL TECHNIQUES

2.1.2 Pendulums

These are the oldest gravimeters. They can be either absolute or relative instruments.

eθl

θ

m

mg

Pivot

Figure 2.1:

First, consider a point mass, m, on a massless string, confined to move in a plane

(i.e. a simple pendulum). See Figure 2.1. The acceleration in the êθ direction is lθ̈. The

gravitational force in the êθ direction is −mg sin θ. So

lθ̈ = −g sin θ.

For small motion sin θ ≈ θ, and so θ̈ ∼= −(g/l)θ.

The solution is θ ∼= A cos(ωt+ φ) where

ω =

√
g

l
(2.1)

is the angular frequency of the motion. Or:

g = lω2 = l
(2π)2

T 2

where T = period. Note that by measuring l and T , you get g. So this is an absolute

instrument.
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Probably the biggest problem, here, is that there is no massless string. The result of

Equation 2.1 is, thus, only approximate at best. (The approximation sin θ ≈ θ can be

removed by using elliptic integrals.)

Instead, a real pendulum is a solid object — preferably a rod of some sort — swung

about a fixed point in the rod (a physical pendulum), and constrained to move in a plane.

See Figure 2.2. Let l = distance between pivot and the center of mass, CM. If N =

θ

pivot

center of
mass (CM)

l

Figure 2.2:

torque about the pivot due to gravity, and I = moment of inertia about the axis passing

through the pivot (and perpendicular to the plane of motion), then

N = Iθ̈

N = −(mg)(l) sin θ

where mg is the force, and l sin θ is the moment arm. So,

θ̈ = −
(
mgl

I

)
sin θ.

For small motion (again, this assumption can be removed) sin θ ≈ θ and

θ = A cos(ωt+ φ)
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where

ω2 =

(
mgl

I

)

or

g =
Iω2

ml
=

I

ml

(2π)2

T 2
. (2.2)

Thus, g depends on I and m — which are not directly measurable.

So in this mode a physical pendulum (that is, any real pendulum) is not an absolute

instrument. It is, though, a relative instrument. I, m and l will presumably not change if

you move the instrument to a new place, so that any change in g causes a corresponding

change in T . So, if g1 and g2 are values of g at two points, and T1 and T2 are the observed

values of T at those points, then:

g1

g2
=
(
T2

T1

)2

.

Thus you can determine g1/g2 by simply measuring times. In this way, relative gravity

can be determined with accuracies of about 0.5 mgal — and pendulums were used until

WWII in this way.

It is also possible to use a trick to turn a physical pendulum into an absolute meter.

You can, in general, swing the pendulum about two different pivot points on opposite

sides of the center of mass and get the same frequency. To see this, note that by the

parallel-axis theorem, I = ICM +ml2 where ICM = moment about the center of mass. So,

ω2 = mgl/ (ICM +ml2), and thus the two pivot points must have the same l/(ICM +ml2).

If l1 and l2 denote the l’s for the two points, then:

l1
ICM +ml21

=
l2

ICM +ml22

or

l22(ml1)− l2
[
ICM +ml21

]
+ [ICMl1] = 0.

Solving for l2 using the quadratic formula, gives:

l2 =





l1
ICM

ml1
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The non-trivial result is l2 = (ICM/ml1). Solving for ICM in terms of l2, and using the

result in Equation 2.2 gives:

g =

(
ICM +ml21

ml1

)
(2π)2

T 2
=

(
l2ml1 +ml21

ml1

)
(2π)2

T 2

or

g =
L(2π)2

T 2
(2.3)

where L = l1 + l2 = distance between the two pivots (since the two points are on opposite

sides of the center of mass).

Run in this manner, the pendulum is an absolute meter. First you choose a pivot and

measure T . Then you find another pivot point that gives the same T , making sure that

this second point is on the opposite side of the center of mass from the first point and

is along the line that includes the first point and the center of mass, You measure the

distance between pivots, L, and use Equation 2.3. Note that you find g by measuring only

a distance and a time. Typically accuracies in this absolute mode are about 0.5 mgal,

the same as for a pendulum used as a relative instrument.

Obviously, an absolute pendulum can be a lot of work to run — since you must search

for the second pivot point. Still, until very recently pendulums were used as absolute

instruments, long after they were abandoned as relative meters. People would maintain

absolute pendulums at a few sites around the world (or else periodically revisit those

sites with an absolute pendulum), and then people using relative meters out in the field

would occasionally visit those sites to recalibrate their relative instruments.

The pendulum results can be corrected for air density (that is, for friction), for tem-

perature, and for the fact that sin θ 6= θ.

The principal problems for these instruments are:

1. the fact that the pivot is not a knife edge — the pivot point moves around a little

in an unknown way;

2. the base of the pendulum moves around as the pendulum oscillates.
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2.1.3 Springs

These replaced pendulums as relative instruments after WWII. They cannot be modified

to give absolute g.

k

m

Figure 2.3: Simple Spring.

Consider a mass on a massless spring; see Figure 2.3. The period of oscillation of

the spring is independent of g, so it can’t be used for anything
(
T = 2π

√
m/k

)
. But at

equilibrium the amount the spring has stretched is l = mg/k. So, g = lk/m. You cannot

measure k/m, so a spring is not an absolute meter. But if you change g you change l.

Note:

g1

g2
=
l1
l2
.

So if you change g2 to g1 = g2 + ∆g, then you change l2 to l2 + ∆l, where

∆l

l2
=

∆g

g2
.

This lets you measure changes in g, by measuring changes in l.

But this simple mass on a spring is an impractical gravity meter. The departure from

equilibrium, l2, might be 1 m at most. So to measure changes in g at the 0.5 mgal level

(the accuracy of a pendulum), you would have to measure changes in length to better
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than

∆l = l2
∆g

g2
≈ 102 5× 10−4

103
cm = 5× 10−5 cm

which is awfully small. So a simple mass on a spring is not too useful.

The best way to make a spring work is to modify it somehow so that it has a very

long natural period. Note that for our mass on a spring

g =
lk

m
=
l(2π)2

T 2
.

So, another way to say ∆l/l = ∆g/g would be:

∆g = ∆l
(2π)2

T 2
.

If you can increase the natural period, T , then a small change in g might produce a

reasonably large, and so measurable, change in l. Increasing T would be equivalent to

making a spring which had a larger l. But there are better ways to make a spring-type

instrument with a much longer period than to simply lengthen the spring.

2.1.4 LaCoste-Romberg Meter

The relative meter now used almost exclusively is the LaCoste-Romberg meter. This

meter has a design which gives almost an infinite period.

Here’s the setup. (See Figure 2.4.) The spring in Figure 2.4 is called a “zero length

spring.” It is designed so that F = kL, where L = total length of the spring. There

are several ways to make such a spring. The wire can, for example, be twisted as it is

wound. The beam of length b — with the mass on it — is free to pivot about the lower

left hand point. That beam is assumed here to be massless.

This system has an infinite period: if the beam is at equilibrium for one value of

θ, then it is at equilibrium for every value of θ. What happens qualitatively is that if

you decrease θ (move m upward), the counter-clockwise spring torque lessens because L

decreases; but the clockwise torque from gravity also lessens, because the angle between

mĝ and the moment arm b̂ decreases. These two effects cancel, and there is still no net

torque.
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This side is vertical.

y

L

β

θ

α
mg

90 + α
m

λ

b

Figure 2.4: Set up for the LaCoste-Romberg Meter.

To see this more quantitatively, the counterclockwise torque on m from the spring

is (kL)(b) sin λ. The angle λ is: λ = β + θ. The clockwise torque from gravity is

(mg)b sin(90 + α). Note that the angle 90 + α = 90 + (90− θ) = 180− θ.
Equating these two torques gives the equilibrium condition:

kLb sin(β + θ) = mgb sin θ. (2.4)

To remove L, note that from the law of sines:

L

sin θ
=

y

sin(180− θ − β)
=

y

sin(θ + β)
.

So L sin(θ + β) = y sin θ, and Equation 2.4 becomes

ky = mg.

So the equilibrium condition is independent of θ: any θ will do, so long as

y =
mg

k
. (2.5)

If y = mg/k does not hold, then the beam b swings all the way clockwise or counter-

clockwise until it hits the stops.
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So the idea is to set the thing up, and then adjust y until the meter is at equilibrium.

Then you know that

g =

(
k

m

)
y.

If you measure a change in y, you can then infer a change in g. Note that this is a

relative meter because of (k/m) in the expression for g. Actually, if the meter were built

as described above, it would be too sensitive. You could never find a y which agreed

exactly with Equation 2.5, so you could never find the equilibrium point. Instead, what’s

done is to tip the side y, slightly, from vertical. This gives a large but finite, natural

period, and it results in a usable but still highly sensitive meter.

The accuracies of this relative meter are approximately 10–20 µgal (0.01–0.02 mgal),

which is much better than pendulums. Fancy LaCoste-Romberg tide meters can do even

better if kept running continuously at the same place.

There are two sorts of errors. One is in measuring y. y is changed by turning a screw,

but the relation between the number of turns and the change in y is not always precisely

known. These errors can be as large as 50 µgal for large changes in y. The second is

spring hysteresis. As the spring is stretched, or even as it ages while doing nothing, the

spring constant k can change, and F = kL becomes F = kL + d, where d is some small

constant. This causes drifts in measured gravity that can be as large as several hundred

µgal per month. This means that, in practice, the meter must be frequently brought

back to a base station and recalibrated.

2.1.5 Superconducting Gravimeter

This is a relative instrument developed by people at the University of California at San

Diego. They are now produced commercially.

The idea is to levitate a superconducting ball in a magnetic field. If gravity changes,

an electrostatic force is applied to the ball to keep it level. The instrument output is

voltage. (So it’s a relative meter.) Essentially it’s an electro-magnetic spring.

The instrument is designed to stay fixed at one spot and measure changes in gravity

with time. It is definitely not portable. Furthermore, interruptions (such as refilling
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liquid helium) can reset the calibration factor (the relation between voltage and g). The

standard method of determining the calibration is to roll a heavy ball of known mass

underneath the meter, and to measure the resulting signal. Though other calibration

methods are now in use, as well.

This instrument is very accurate, with sub µgal accuracies (as good or slightly better

than the best LaCoste-Romberg tide meters). Making the instrument superconducting

keeps currents in the ball stable. In fact, the meter is exceptionally stable, which is its

main advantage over good LaCoste-Romberg meters. The big disadvantage is that it is

not portable.

2.2 Relative Gravity at Sea and on Planes

The instruments described above are primarily land instruments. Trying to measure g

from ships or planes leads to all sorts of additional problems. But, you certainly need

to know g over the oceans. And sometimes measurements from planes or helicopters are

desirable to get to inaccessible regions; or to speed up a survey.

The extra problems are associated with the fact that ships and planes are moving

objects. The errors from the motion can be severe, and can easily swamp instrumental

noise. Thus, it can be more important to use meters that minimize the motion errors, than

to use meters designed simply to measure g extremely precisely. For example, pendulums

were used in ships until recently, since the additional accuracy of a LaCoste-Romberg is

not always needed.

One problem is knowing where you are making your measurements from. Nowadays,

you can figure that out very well using the space positioning measurements that we’ll

discuss later. In the past, though, people had to use astronomy (e.g. observing the stars

and the sun) to determine their latitude and longitude, and then had to somehow find

the height of the meter above mean sea level.

A second, more serious problem nowadays, is knowing what your velocity is. The

problem is that since the earth is rotating, any moving object experiences Coriolis forces
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which can be confused as gravitational forces.

To understand the biggest effect, suppose you’re in a ship moving east or west — the

same direction as the motion due to rotation. Let’s think of the resulting force as an

increased (or decreased) centrifugal force, rather than as a Coriolis force. Suppose you

attach a coordinate system to the earth and ship so that it rotates about the North Pole

with the angular velocity of the ship: Ω = Ω0 + v/(a sin θ) where Ω0 = rotation rate of

the earth, v = eastwards velocity of the ship, a = earth’s radius, and θ = colatitude of

the ship. There is no Coriolis force, because the ship doesn’t move with respect to the

coordinate system. The centrifugal acceleration on the ship and every object in it is

Ω×
(
Ω× r

)
= ΩΩ · r − rΩ2. (2.6)

The radial component of the right hand side will look exactly like gravity to the meter:

r̂ ·
(
Ω×

(
Ω× r

))
=

[
(r · Ω)2 − r2Ω2

r

]

= −aΩ2 sin2 θ

where r = a at the earth’s surface, and r ·Ω = aΩ cos θ. So, the “gravitational” accelera-

tion shown on the meter will really be g−aΩ2 sin2 θ, instead of g. People on land routinely

subtract off the aΩ2 sin2 θ term, assuming Ω = Ω0. But, from a ship (or a plane), Ω also

depends on v. To lowest order in v, the measured acceleration is approximately

g − aΩ2
0 sin2 θ − sin2 θa

[
2Ω0

v

a sin θ

]
. (2.7)

So, the lowest order correction due to east–west velocity is:

∆g = −2Ω0v sin θ.

This is the “Eotvos correction.” It works out to be (7.5 sin θ) mgal/knot. (1 knot =

1.15 mile/hour = 50 cm/sec.)

For ships, the Eotvos correction is typically 50 mgal. For planes, which move faster,

it is typically 1000 mgal. So it is important to make this correction — and thus to know

your velocity accurately. Nowadays, the space positioning measurements described below

can be used to determine your velocity well enough.
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There is also a contribution from north–south motion, but it’s only about 1 mgal in

planes and is negligible in ships. It’s small because the Coriolis force it induces is mostly

horizontal, not radial, and so it is not confused with g as easily.

But, the biggest problems come from unknown accelerations of the ship or plane. For

example, if the meter support accelerates, the meter can confuse that acceleration with

gravity.

Horizontal accelerations and tilting of the ship or plane are less of a problem than

vertical accelerations. There are two ways to remove the effects of tilting and horizontal

accelerations, both of them instrumental (see Figure 2.5):

meter

θ

Figure 2.5:

1. Swing the entire meter about a pivot point. A horizontal acceleration starts it

swinging. You measure θ and can thereby remove the swinging motion from the

meter reading.

2. Put the meter on a stabilized platform with gyroscopes to keep it level and hori-

zontal accelerometers to determine the horizontal acceleration.

Vertical accelerations are the biggest problem. A vertical acceleration is indistin-

guishable from the gravitational acceleration. Typically, vertical accelerations in ships

are equivalent to 104–105 mgal in gravity. So, they can be huge.
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The only way to get rid of the effects of vertical accelerations is to average over time.

Some instruments do the averaging, partially, for you — by including damping to filter

out high frequencies. For example, sea-going LaCoste-Romberg meters do it that way.

But even in that case, at least some additional averaging of the data is needed.

For example, the instrument measures g + ẍ, where ẍ = vertical acceleration. The

averaged output over time T is:

gavg ≡
1

T

∫ T

0
(g + ẍ) dt = g +

ẋ(T )− ẋ(0)

T
.

So, the longer the averaging time (T ), the smaller the error. But, long term accelerations

can’t be removed.

Planes are smoother than ships, but you can’t average for as long in planes because

they don’t stay in one place very long.

Typically, errors in g from ships are approximately 1 mgal. Errors in g from helicopters

are approximately 2 mgal. Errors in g from planes are worse.

These numbers are large enough that sometimes other meters besides LaCoste-

Rombergs are used in ships and planes. Maybe the most common of these is a “vi-

brating string” meter, which can achieve accuracies of only 1 mgal on land. This meter

has a mass on the end of a thin metal ribbon. The ribbon is shaken and the mass

and ribbon vibrate at a characteristic frequency, which depends on g. The frequency is

measured to find g. The frequency is not particularly dependent on accelerations.

2.3 Free Fall Meters

These are absolute instruments. They replaced pendulums maybe 20 years or so ago.

The idea is to watch an object fall and thereby determine its acceleration. If v0 is the

initial velocity, and x1 is the vertical distance fallen after time t1, then: x1 = v0t1 +gt21/2.

If x2 is the distance fallen after time t2, then x2 = v0t2 + gt22/2. Eliminating v0 gives:

g =
2

t1 − t2

(
x1

t1
− x2

t2

)
.
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So, if you measure (x1, t1) and (x2, t2) you can find g. Since x is a distance and t is a

time, this is an absolute meter. No calibration is necessary (except of your measuring

tape and your clock). In practice, you probably want to measure lots of x’s and t’s, and

then determine g by least squares fitting it to x = v0t+ gt2/2.

The earliest free fall meter was simply a meter bar which was dropped alongside a

fixed pointer. A strobe light was flashed at a known frequency and a number was read

off the meter stick at each flash as it fell. See Figure 2.6.

Figure 2.6:

Nowadays, free fall meters are much fancier. They involve laser interferometers.

2.3.1 Launch Type

You throw a mass, m, upwards — and measure two time intervals (see Figure 2.7):

1. tA = time between upward and downward crossing of A;

2. tB = time between upward and downward crossing of B.

Then, tA/2 = time to get from A to the top of the trajectory. Since at the top the

velocity is 0, then:

0 = vA − g
tA

2



2.3. FREE FALL METERS 19

B

A

h

m

Figure 2.7:

where vA = upward velocity at A. So,

vA = g
tA

2
(2.8)

Also, (tA − tB)/2 = time to go from A to B. So, if h is the height of B above A, then:

h = vA

(
tA − tB

2

)
− g

2

(
tA − tB

2

)2

.

Using Equation 2.8 for vA gives h in terms of tA, tB and g. Or inverting to find g:

g =
8h

(tA)2 − (tB)2

So, measuring a distance (h) and two time intervals gives g.

The best launch instruments are very good. They have been developed by people in

Japan.

2.3.1.1 Advantages over free-fall-only instruments

1. Air resistance cancels to 1st order. That’s because the drag force is downwards on

the way up, and upwards on the way down. The instrument is run in a vacuum,

anyway. But, the effects of the remaining air in the vacuum are small.
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2. Timing biases are not as important as in a free-fall-only meter. (A timing bias refers

to the time it takes, after the passage of the mass, for the instrument to register

the time of passage.) That’s because, here, it’s time intervals that are measured.

2.3.1.2 Disadvantages

Launching the mass deforms and shakes the entire instrument in an unmodelable way,

and that produces errors in g.

2.4 Free-Fall-only Meters

These involve masses which are dropped instead of launched. Jim Faller’s group at

the Joint Institute for Laboratory Astrophysics (JILA) has played an important role in

developing this type of meter. Only a very few places in the world make them. I’ll

describe the JILA meter in some detail.

See Figure 2.8. The laser emits light with wavelength λ. The path length from the

beam splitter to the fixed cube and back is 2L1. The path length from the beam splitter

to the falling cube and back is 2L2(t). L2(t) depends on time as the cube falls. L1 is

independent of time.

The detector sees a mixture of light from each corner cube. The phase difference

of the two beams is the wave number, k = 2π/λ, multiplied by the difference in the

distances the two beams have traveled (2L2(t) − 2L1). So, ∆φ = phase difference =

4π (L2(t)− L1) /λ. Thus, if 2(L2(t)− L1) is an integer times λ, then the two beams are

in phase and you get a large signal. If 2(L2(t) − L1) is a half integer times λ, the two

beams are 180◦ out of phase and you get a small signal.

So, you drop the cube and look at the detected signal as a function of time. You

use a zero-crossing discriminator to give a pulse at every zero crossing (that is, when

the two beams are out of phase by 180◦). Every 3000 pulses, or so, you record the

time. So, you know the times corresponding to distance intervals of (3000) × λ/2 ≈
(3×103)× (3×10−5) cm ≈ 1 mm. For a drop of approximately 20 cm you get 200 values
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fixed
to

earth

falling corner cube

beam splitter

detector

laser

L 2

1L

Figure 2.8:

of x and t which you fit to x = v0t+ gt2/2 to get g. It takes about 0.2 seconds to make a

drop, and the whole process of dropping, computing g, and raising back to the top takes

about 4 seconds. So, there are about 15 drops/minute.

There are four sources of error:

1. uncertainty in λ

2. electronic counting and timing errors

3. ground acceleration

4. non-gravitational forces: for example, electro-magnetic forces (EM) and air resis-

tance
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The objective is to obtain accuracies of about 1 µgal (1 part in 10−9), which corre-

sponds to 3 mm of vertical motion.

2.4.1 Uncertainty in λ

This is no problem nowadays. There are lasers with frequencies that are stable to 10−11.

You either use one of those directly, or you periodically calibrate your laser against one.

2.4.2 Electronic counting and timing errors

This is ok, nowadays. You need to know the timing to

(1× 10−9)︸ ︷︷ ︸
accuracy

in
gravity

× (0.2)︸ ︷︷ ︸
time of

the
drop

sec ≈ 2 nsec.

You can live with errors larger than this if they are constant during the drop. And, any

errors larger than this are probably due to the time delay between fringe crossings and

timer response, which would be nearly constant.

2.4.3 Ground Acceleration

This can be a problem. The typical ground acceleration (called “microseisms”) due to

the interaction of the oceans with the sea floor is on the order of 10−6g and has energy

peaked at periods of around 6 seconds. This acceleration affects the fixed corner cube and

can map into errors in g. Its effects on the laser and detector don’t matter, because both

beams travel through the laser and detector in the same way — and it’s the difference

in the beam paths that you measure. Because 6 sec > 0.2 sec (the time duration of a

drop), the acceleration is not averaged out during a drop.

One way to get rid of the problem is to average over lots of drops. But to obtain

1 × 10−9 accuracy with 10−6 random errors, you’d need to make (1/(1 × 10−3))2 ≈ 106

drops. This would take approximately 1000 hours.
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To reduce this averaging time, they use a very long spring. They suspend the fixed

cube from the spring. The spring has about a 60 sec period. Since 60 sec � 6 sec,

the cube at the end of the spring doesn’t move much due to the microseisms. To get a

spring with a 60 sec period, note that kl = mg and T = 2π
√
m/k ⇒ l = gT 2/(2π)2 ≈

103 · (60)2/62 cm ≈ 1 km, where l = amount the spring is stretched at equilibrium. So,

the spring, itself, would have to be substantially longer than 1 km.

Instead, they use what they call a “super spring” — a device that electronically

mimics a 1 km spring. The idea is that in a real spring, points on the spring near the

bottom move almost — but not quite — like points at the bottom. They use a sensor

to detect differences between the bottom and the top of a short spring, and they move

the top as though it and the bottom were, instead, part of a 1 km spring.

The super spring reduces number of drops needed by a factor of about 400.

2.4.4 Non-gravitational forces

Electro-magnetic forces used to be a problem because the falling cube was dropped by

shutting off a magnetic field. That caused eddy currents in the cube which interacted

with other electro-magnetic fields and perturbed the fall. Now the cube is dropped

mechanically, instead.

Air resistance is a potential problem. To get it down to an acceptable level (1 µgal

errors in g), some instruments use a very high vacuum (about 10−7 mm of mercury, which

is approximately 10−10 of atmospheric pressure). This low pressure causes mechanical

problems (more friction, more equipment). Instead, the JILA instrument pumps down

only to 10−5–10−6 mm of mercury, and then uses a falling chamber that moves with the

cube during its drop.

As the cube is dropped, it is tracked by the laser interferometer through a hole in the

bottom of the chamber. The position of the cube relative to the chamber is also optically

sensed as the cube falls. The chamber is then driven downward mechanically at the right

speed so that the position of the cube doesn’t change relative to the chamber. Thus, the

chamber pushes the remaining air out of the way.
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This also provides the mechanical dropping mechanism: Initially the cube rests on

the chamber. The motion is started by suddenly driving the chamber downward, which

causes the cube to come free and to start to fall.

2.4.5 Accuracy

The JILA instruments and their derivatives are believed to be accurate to the 1 µgal

level, for averaging times of a few days to a couple weeks.

2.4.6 Satellites

Another way to measure gravity, and certainly the best way to obtain gravity at global

scales, is to use satellites. We’ll talk about this later, when we discuss space geodesy.

2.5 Positioning

The other broad goal of observational geodesy is to determine the locations of points on

the earth’s surface. Geophysicists are interested in this type of observation, because it

allows them to look for displacements of the earth’s crust. What level of accuracy do you

need to begin to detect crustal motion? To measure continental drift you’d like to be able

to determine the relative positions of two points to roughly 1 cm over baseline lengths (the

“baseline” is the vector between the two points) of at least a few thousand km, which is

the typical width of a plate. The relative motion between plates is generally on the order

of a few cm/yr, so that this level of accuracy would let you determine plate motions with

relatively small errors after a very few years. Note that 1 cm accuracy over a baseline of

a few thousand km requires an accuracy of 1 cm/a few× 108 cm = a few× 10−9.

The detection of local and regional tectonic deformation near plate boundaries does

not require such high accuracies, because the deformation occurs over shorter baselines.

For example, strain rates (the strain = the change in baseline length divided by the

baseline length) over baselines of tens to hundreds of km are typically 10−7 per year in
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California, a tectonically active region. And a conventional geodesist — who only wants

to tie local survey nets together — can settle for much worse accuracies.

2.5.1 Ground Based Techniques

To find positions, people use combinations of four sorts of measurements:

1. measurements of horizontal angles between points

2. measurements of elevation differences between points

3. measurements of distances between points

4. measurements of a point’s coordinates with respect to the stars or to some other

special astronomical coordinate system. (Or, what is equivalent, measurements of

a point’s latitude and longitude.)

You need to measure latitude and longitude because measurements of horizontal an-

gles, elevation differences, and distances, just tell you the position of one point relative to

another. Latitudes and longitudes tell you something about one point relative to inertial

space.

How do you measure these things using ground-based techniques?

(Note: space techniques, that we’ll talk about later, determine all coordinates of a

point or a baseline at once. There is no natural separation into four categories.)

2.5.1.1 Horizontal Angles

Horizontal angles can be used to help find where points are on the earth’s surface relative

to one another. (Vertical angles, incidentally, tell you about the shape of that surface.)

You can’t determine relative locations, though, without also measuring distances between

points.

A typical instrument that measures horizontal angles consists of two telescopes that

pivot about a common, vertical axis, and some sort of level used to make sure that axis

is vertical. You want to measure the horizontal angle θ between lines AB and AC. See
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θ

C B

A

Figure 2.9:

Figure 2.9. You put the instrument at A, sight one telescope towards B and one towards

C. You level the two telescopes so that they are both horizontal, and then measure the

angle, θ, between the telescopes.

Suppose your goal is to find out where C is with respect to A. Suppose you have

determined the absolute direction of the line AB. Maybe you’ve done this with astro-

nomical techniques. Or maybe you’ve arbitrarily defined your coordinate system so that

AB has a specific direction (that is, you’ve tied your system to that line somehow). Then

to find the position of C, you measure θ — and you measure the distance between A

and C. Until the 1960’s, distance measuring was tedious: you’d just roll a tape along

the ground. So, you’d rather measure angles than distances. In that case, what you’d do

was to measure θ. Then, you’d also measure the angle between BA and BC. And, you’d

measure the distance BA with the tape. That would give C. The advantage of this was

that if you then wanted to find the position of some other point, D, you would measure

the angle between AD and AB, and the angle between BA and BD, and then use the

distance AB that you’ve already measured. So, you could do lots of points by measuring

no distance except AB.

This technique is called “triangulation.” It is not used much anymore for geode-

tic/geophysical applications. Its accuracy is approximately 10−5, which is not good
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enough for most geophysical studies. Its advantage was that it minimized tiresome dis-

tance measurements.

Nowadays, geophysical geodesists don’t often measure horizontal angles at all. In-

stead, they use only distance measurements, which are now easy to make and are very

accurate. The techniques involve laser interferometers and I’ll wait a little to describe

them.

Meantime, how does this new method work? Suppose you know the locations of two

points, A and B. See Figure 2.10. You want to know the location of C. You measure

AC and BC, which then tells you that C lies on the intersection of two known circles.

C

A

B

Figure 2.10:

That determines C uniquely.

There is, sometimes (not often used), a slight twist to this. You can measure the

difference between AC and AB, and then the difference between BC and BA. By

comparing those two distance differences, C can be found. There can be advantages to

measuring distance differences, rather than absolute distances.

Whichever method you use is called trilateration. It is much more accurate than tri-

angulation. I’ll describe the accuracies when I describe distance measuring instruments,

below.
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2.5.1.2 Elevation

The basic methods of measuring elevations haven’t changed, as far as I know, for hundreds

of years. You want to measure the elevation difference between A and B. See Figure 2.11.

A

B

Figure 2.11:

You put two vertical rods with meter (and cm, mm, etc.) markings on them, at A and

B. You put the leveling instrument — consisting of a telescope and a level — in between

A and B. You use the level to keep the telescope horizontal, and sight first on the A rod,

and then on the B rod. You read off the numbers you sight on from the two rods, and

the difference between those numbers is the difference in elevation. Here you can see the

importance of gravity for determining elevation: the orientation of a horizontal surface

depends on the direction of gravity.

One obvious limitation of this technique is the finite rod height. The standard height

is 2.5 m, so you can’t measure over a baseline with elevation changes of more than this.

Surveying this way in rough topography is tedious. An alternative is to measure vertical

angles, by training a telescope at the end of the baseline, and determining the angle

between the telescope and the horizontal plane.

The errors in leveling are, traditionally, assumed to be 10−5; that is, 1 cm over a 1 km

difference in elevation. But, leveling hasn’t always been done that well in the past. There
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are two sources of systematic error that can cause topographic-related errors larger than

this, if not properly accounted for:

2.5.1.2.1 Leveling Errors

2.5.1.2.1.1 Rod calibration errors If meter marks on the rods aren’t in quite the

right places, you’ll get topographic-related errors. If you switch rods from one survey to

the next, these errors will make you think the ground has moved. You get a similar effect

if you change the lengths of the individual baselines you sight over. In that case you will

be sighting on different sets of meter marks which will have different errors.

2.5.1.2.1.2 Refraction This is a hard problem. The light going from the rod to the

telescope is bent due to temperature gradients along the ground. So the number you read

off the rod, and the telescope, are not quite on the same horizontal surface. People do

know how to correct for this effect given the temperature on the ground. But temperature

measurements were not always made in past surveys. The corrections are dependent on

the variation in topography along the line. If you do not make these corrections, or if

they are not made properly, there can be topographic-related errors as large as 10−4;

This effect can be particularly severe if you change the baseline lengths you level over,

since the size of the correction varies with baseline length in a non-linear fashion.

2.5.1.2.2 Fluid Tiltmeters One other method is occasionally used to measure ele-

vation differences between points. This method involves fluid tiltmeters. There are two

versions:

1. You measure the height of the fluid column in each of the two vertical segments

of the container shown in Figure 2.12. The difference in heights = the elevation

difference.

2. You measure the fluid pressure at each end of the pipe in Figure 2.13.
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fluid

Figure 2.12:

fluid

Figure 2.13:

These instruments can measure 10 m elevation differences — and so can be useful

when there is a lot of topography. They are usually used, though, as fixed instruments to

look for time dependent tilts at one place. The results can be affected by temperature,

so the instruments must be thermally insulated. Instruments have even been built which

have two fluids with different thermal expansion coefficients, so the thermal effect can be

removed.
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There are related, short baseline instruments called “tiltmeters.” These are designed

to measure time dependent changes in the normal to the surface at a fixed point. Tilt-

meters can be fluid tubes, as described above, but here they are only a few cm long. Or,

they can be horizontal pendulums.

2.5.1.3 Latitude and Longitude

Latitude and longitude measurements used to be made at certain points along a survey

to fix those points with respect to the stars, and to reduce cumulative errors which can

build up over a survey. There were also fixed stations around the globe which measured

their latitude and longitude on a routine basis. Results from the fixed stations were used

to fix the terrestrial coordinate system to the stars, and thereby to look for variations

in the earth’s rotation. These stations were all closed down about a decade or so ago.

But, they provided information about the earth’s rotation going back into the the 19th

century that is still being used today to study long period rotation fluctuations.

How did people measure their latitude and longitude relative to the stars?

2.5.1.3.1 Latitude You align a rod along the local vertical. You watch a star with

a telescope as the star moves from east to west across the sky. The star is at its highest

point as it passes the north–south meridian running through the observer. At that point

you measure the angle z (the “zenith distance” of the star) between the telescope and

the vertical rod. Then θ = co-latitude = δ − z, where δ = known stellar co-declination

= angle between the star and the earth’s rotation axis, Ω. See Figure 2.14.

Refraction of the starlight as it passes through the atmosphere causes the light to

bend, and results in errors in θ. These can be partially modeled, but remaining errors

are approximately 1 second of arc, which corresponds to a position error of the point on

the earth’s surface of about 30 m.

To reduce this error, people often looked at a pair of stars on two sides of the local

vertical. See Figure 2.15. You measure z1 and z2. Then θ = δ1 + z1 and θ = δ2 − z2. So,

θ =
1

2
[δ1 + δ2 + z1 − z2] .
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So, you can determine θ by measuring z1 − z2: the difference in angles. For z1 and z2

about equal and very small, the refraction errors mostly cancel in z1− z2. Accuracies are

approximately 0.1 arc seconds, which maps into roughly 3 m of surface position error.

This is still pretty large, but if lots of stars are observed, you can reduce the error further.

For example, the big international services which routinely measured latitude at fixed

stations, could determine θ to approximately 0.01 arc seconds when averaged over a

month or so (about 30 cm at the surface), although they still got errors of 1–3 meters at

the surface at the annual frequency, due to annual variability in the atmosphere which

can’t be averaged out.

2.5.1.3.2 Longitude The method was similar to that used for latitude observations.

You watch a star with a telescope until it passes the local meridian. Then you record

the time using an accurate clock. You know from a table the time the star passed the

Greenwich meridian. Let this time be tG. Then φ, the angle west of Greenwich, is

φ = (t− tG)Ω

where Ω = rotation rate of earth. Individual determinations of east–west position through

the mid-1960’s were accurate to 10–30 m, due to refraction and, especially, to clock errors.

You can average the errors down assuming random clock errors.

Again, gravity affects both the latitude and longitude measurements: stellar positions

are recorded relative to the local vertical, and the vertical depends on local gravity.

2.5.1.4 Distances

There have been rapid developments in distance-measuring instruments over the last

few decades. Tape measures have been replaced by instruments which send and receive

electro-magnetic radiation — usually light. The method is to shine a continuous beam

of mono-chromatic radiation on a distant target. The beam is usually then reflected

back to the source, where the phase difference between the emitted and received waves is

measured. This phase difference tells you something about the distance between the two



34 CHAPTER 2. OBSERVATIONAL TECHNIQUES

points. For example, suppose the two phases differ by δ. Then, you could deduce that

the round trip distance between the two points was an integer number of wavelengths

plus
(
δ

2π

)
wavelengths. If D is the source-target distance, so that 2D is the round-trip

distance, and if λ = wavelength, then 2D = lλ + λ
(
δ

2π

)
, where l is an integer. You

wouldn’t, of course, know l. This problem (finding l) is called the “2π ambiguity.” To

find l you must either:

1. already know the distance to within one wavelength through some other means; or

2. change λ slightly, do the experiment over again, and combine the results from both

experiments. This allows you to reduce the 2π ambiguity considerably, as we will

see.

In either case, using un-modulated light doesn’t work well. The wavelength of light

is approximately 5×10−7 m, which is simply too small. For this wavelength, the 2π

ambiguity would require you to already know distances to 5×10−7 m. By using method 2,

above, you could reduce the 2π problem, but this would be hard to implement effectively

in such an extreme case.

Instead, you use light as a carrier, but you modulate it at low frequencies and compare

phases of the modulation. The modulation can be in amplitude, frequency, phase or

polarization. For amplitude modulation, the signal looks like Figure 2.16. For typical

Figure 2.16:

modulations — usually radio frequencies — λ can be tens of cm’s to a few m’s. So the
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2π problem is manageable, in the sense that you can readily overcome it by changing λ

slightly and re-doing the experiment.

Why not use radio waves directly (no carrier)? The answer is that light waves are

easier to use, particularly if you can use lasers.

Why not use a modulation wavelength of much larger than tens of cm’s to a few

m’s, so as to further minimize the 2π problem? The answer is that the use of longer

wavelengths tends to reduce accuracies. For example, if you are able to measure phase

differences to an accuracy of ∆ radians, then you will have an accuracy in your distance

measurements of λ∆/2π, which is proportional to λ. So, the smaller the wavelength, λ,

the smaller the error.

These distance measuring devices are called Geodimeters. Here’s a short history of

their development.

2.5.1.4.1 White light These were the first geodimeters. They predated lasers. They

worked sort of like this:

A light signal is modulated by shining it through a revolving wheel with a slit. When

the slit points, say, directly downward, the slit is in front of a light source. In that case

light gets through and travels toward a mirror several km away. Thus, an observer at the

mirror sees what looks to be a strobe light blinking on and off. The light from the source

has had its amplitude modulated by the wheel. The modulation is a series of square

waves: equal to 1 when the slit is in front of the source, and equal to zero when the slit

is not in front of the source.

The light hits the mirror and returns to the wheel. If the returning light hits the

wheel when the slit is pointing directly downward again, the light passes through and is

recorded by a detector located next to the original light source. If the slit is not pointed

directly downward, the returning light doesn’t get through. (This is basically the way

Michelson and Morley measured the speed of light.)

Let τ = the time it takes the wheel to revolve once = the period of the modulation.

Let 2D be the round trip distance traveled by the light (between the wheel and the mirror
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and back again) so that the round trip travel time of the light is 2D/c, where c is the

velocity of light. Thus, the light gets through to the detector if 2D/c = τk where k is an

integer. So, light is detected if

2D = kcτ . (2.9)

The product cτ is the wavelength of the modulation. To determine the distance D, you

adjust the rotation period, τ , until light does get back through to the detector. In that

case you know that D satisfies Equation 2.9. The unknown integer k represents the 2π

ambiguity.

Why not slow the wheel down — increase τ — to reduce the 2π problem? For

example, if you know the distance is around, say, 10 km, why not make τ so large that

cτ/2 ≈ 10 km, and then vary τ around this value so that light gets back through? Then,

you’d know k = 1. The problem with this is that your estimate of the time that the light

takes to arrive back at the receiver, has an uncertainty that depends on the width of the

slit and on how long the slit is in front of the detector. In other words, the uncertainty

in D is
width of slit

circumference of wheel
× cτ

2

which increases with τ . Another way to say this is that the phase difference between the

transmitted and returning signals can be determined only to within

width of slit

circumference of wheel
× 2π radians. (2.10)

The corresponding error in distance is one-half the wavelength over 2π (that is, cτ
2
· 1

2π
)

times Equation 2.10. So, you don’t want to pick τ large.

So how do you deal with the 2π problem? Suppose you pick, say, cτ = 10 cm. To

find k you would have to already know D to 5 cm, which is unlikely. However, suppose

you change τ a little and make the measurement again. You find τ1 and τ2 that both

work. So:

D = k
(
cτ1

2

)

and

D = l
(
cτ2

2

)
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where τ1, τ2 are known, and k and l are unknown integers. So,

k

l
=
τ2

τ1

Suppose τ2 and τ1 are very close: maybe, say

τ2

τ1
= 1.0001.

Then, since k and l are integers, you know that k/l = 10001/10000, or 20002/20000, or

j(10001/10000) where j = integer. So, now you know that l = 10000, or 20000, or 30000,

etc., and so

D = j 10000
(
cτ2

2

)

where j = 1, 2, . . . . So, you’ve reduced the 2π uncertainty down to 10000×10 cm = 1 km,

and you’d only have to know the distance beforehand to 1 km. This is the general

approach used by all geodimeters to reduce the 2π problem.

The conventional white light instrument described above became obsolete when lasers

became available. Its modulation was somewhat different than I have described it, but the

idea was similar. The accuracies were a little worse than 10−6 over 5–50 km baselines.

So, it could do horizontal positions about one order of magnitude better than could

triangulation. But, it only worked at night.

2.5.1.4.2 Radio signals To get something that worked during the day, people in-

vented the Tellurometer. It used un-modulated radio waves with no carrier. Its accuracy

was about 3× 10−6 over baselines of up to 70 km.

2.5.1.4.3 Lasers All geodimeters now use lasers for the carrier signal. Lasers can

be aimed better than white light or radio waves, and they work in the daytime. They

are modulated electronically, not mechanically. Typical modulation frequencies are ap-

proximately 50 MHz, which gives a modulation wavelength of around 5 m. So, the 2π

ambiguity is around 2–3 meters. You reduce the ambiguity by changing λ slightly and

repeating the phase measurement, as described above.
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There are various ways to detect the phase shift of the returning signal. One way is to

mix it with the transmitted signal. Then you adjust the modulation frequency slightly

until the combined modulation signals are in phase. You achieve this by maximizing

the combined modulated signal. Then you know that at that frequency the round trip

distance is exactly an integral number of modulation wavelengths.

The accuracies with the laser instruments are about the same as with white light:

about 10−6. The biggest error source comes from the atmosphere the wave propagates

through. To find the distance traveled by the wave, you need to know the wavelength

of the modulation. Instead, what you do know is the angular frequency, ω, of the

modulation. To deduce λ from ω you need to know the velocity of light, and that

depends on the index of refraction n:

λ =
c2π

nω
.

And, n depends on the amount of air the wave travels through, and on the water vapor

content of that air. The dependence on water vapor is relatively weak at optical frequen-

cies (it is the index of refraction at the frequency of the carrier wave that is pertinent),

though it is non-negligible.

So, to improve the accuracies, you must determine the densities of the air and of

water vapor integrated along the path of the signal. The usual way to do that is to fly

an airplane along the path while you make the measurement, and to monitor pressure,

temperature, and humidity from the plane. The densities can then be estimated from

these measurements. The accuracies people obtain using this method are approximately

3× 10−7 over baselines of 30 km or less.

Airplanes are expensive and hard to schedule. An alternative is to use a multi-

color instrument. Larry Slater (formerly of CIRES) has designed and built two-color

instruments, which he has used in California and in New Mexico. Judah Levine in JILA

has built a three-color instrument. I will briefly describe both of these.

2.5.1.4.3.1 Two-color meters The idea is to use the known dispersive properties

of air: make measurements at two carrier frequencies — red and blue, say — and then



2.5. POSITIONING 39

compare to deduce the index of refraction at either frequency.

Specifically, n − 1 (= 0 for a vacuum) depends on the carrier frequency ω. You can

write n− 1 = αρair + βρvapor where ρair and ρvapor are the densities of dry air and water

vapor, and α and β depend on ω in a known way. The βρvapor term is much smaller than

the αρair term at optical frequencies. The two-color meter just tries to deduce the αρair

term. The βρvapor term is inferred by making meteorological measurements at both ends

of the baseline.

So you know α but not ρair. If n(ωc1) and n(ωc2) are the values of n at the two carrier

frequencies, then you know
1− n (ωc1)

1− n (ωc2)
≡ ∆ (2.11)

without making any measurements (assuming you ignore the βρvapor term).

You then measure the distance D at the two frequencies. Suppose you find that

D = Aλ1 and D = Bλ2 where A and B are your measured results, and λ1 and λ2 are the

wavelengths of the modulation. (For both carrier frequencies, you have presumably gone

through the usual trick of adjusting the modulation frequency slightly to resolve the 2π

problem when determining A and B.) But, what are λ1 and λ2? If, in each case, the

modulated frequency is ω, then

λ1 =
c2π

n(ωc1)ω
(2.12)

λ2 =
c2π

n(ωc2)ω
.

So, equating the two results for D gives:

A
c2π

n(ωc1)ω
= B

c2π

n(ωc2)ω
.

Or

n(ωc2) =
B

A
n(ωc1). (2.13)

Then, using Equation 2.13 in Equation 2.11 gives

n(ωc1)
[
B

A
∆− 1

]
= ∆− 1.
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So, your measurements of B and A give n(ωc1), which then goes in Equation 2.12 to find

λ1 and then in D = Aλ1 to give D.

In his two-color meter, Larry Slater modulates his carrier waves with a rotating

polarizing crystal. He de-modulates by having the wave pass back through the crystal

when it returns. (So, it’s like the white light passing through the rotating cog wheel.)

The returning signal will be maximum if the crystal has exactly the same orientation

when the wave returns as when it was sent. He adjusts the modulation frequency slightly

until that maximum is obtained. (Actually, he tries to minimize the signal rather then

to maximize it — so the round-trip distance works out to be an odd number of half

wavelengths.) His modulation works out to λ ≈ 10 cm. So, the 2π ambiguity in one way

distance is approximately 5 cm.

His accuracy is approximately 1× 10−7, which is slightly better than can be obtained

using a one color geodimeter with a plane. But his meter is much cheaper to run and

easier to operate. It has a somewhat shorter range, about 10–15 km. And, it’s not very

portable. The accuracy is limited by the uncertainty in the water vapor along the path.

2.5.1.4.3.2 Three-color meter All of these problems are reduced in Judah Levine’s

three-color meter. This instrument uses red and blue to get ρair, and an un-modulated

microwave signal (λ ≈ 4 cm) to infer ρvapor. You’ve got to use a microwave signal, instead

of a third optical carrier, because the effects of water vapor are not notably dispersive at

optical frequencies. That is, β is about the same at all optical frequencies.

The range is increased, too, to 30–50 km. The reason is that the optical portion of

Judah’s meter is one way instead of round trip, and less of the laser beam is lost if it

travels a shorter total distance. (Though the microwave signal used to infer the water

vapor is two way.) The meter is also portable. It fits into a four-wheel-drive vehicle or a

helicopter.

In this instrument, red and blue, modulated in polarization, are sent from one end to

the other, where they are received and the phase difference is measured. This gives ρair.

(In fact, in this configuration the instrument could be used with conventional one-color
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geodimeters to replace the plane.) Then, only red is sent back to the starting end. When

this second red signal is sent, the phase of its modulation is locked to the modulation

phase of the first red beam, so it’s just like a reflection. The red is received at the starting

end, the modulations of the returning signal and the outgoing signal are compared to

determine the phase shift, and the distance is inferred.

The overall accuracies for this instrument are about 2–3 ×10−8, which are substan-

tially better than those of any other geodimeter. One error source is that red and blue

are bent by the air along slightly different paths, and so sample different n’s.

2.5.1.4.4 Strainmeters These are another sort of distance-measuring instruments,

but they have a different purpose. They are designed to sit at a fixed location and

measure the change in distance with time between two closely separated points. They

are not survey instruments.

They are very accurate. The most accurate of them can measure a change in a fixed

baseline to one part in 1010. The baselines, though, are less than 1 km: usually tens of

meters.

The earliest strainmeters were two piers, fixed in the ground, with a horizontal quartz

rod attached to one pier and almost touching the other. See Figure 2.17.

rod

Figure 2.17:

The distance between the rod end and the second pier was continually monitored.

The typical baseline, here, would be less than 100 m. Many of these are still used.

The newer and more accurate strainmeters are laser interferometers. There aren’t
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many of these. Judah Levine built a strainmeter with a 30 m baseline that he operated

for a while in the Poor Man mine, west of Boulder, Colorado. It has been shut off now

for a number of years.

Judah’s instrument used two lasers. One was kept running at a stable frequency (it

had to be continually calibrated). The other sent light from one point in the tunnel, to

a point 30 m away, and then back again. The path was evacuated of air to eliminate

refraction. The frequency of this second laser was continually tuned so that the returning

wave was in phase with the transmitted wave; thus, the round trip travel time was an

integral number of wavelengths. The wavelength was then determined by beating the

output from that laser against the output from the stable laser and looking at the beat

frequency. A change in the beat frequency meant a change in the path length. Note

that the strainmeter does not modulate the light; it works with the phases at the optical

frequencies. This does not work well for geodimeters, because the 2π problem would

be too severe. But for strainmeters, the 2π problem is not an issue. For strainmeters

you are not trying to determine the absolute distance between the points. Instead, you

are interested in time-dependent changes in the distance. And, since you monitor the

baseline continuously, changes in the baseline can be determined without knowing the

integral number of whole wavelengths traveled by the wave.

2.5.2 Space Techniques

There are two types of space positioning techniques:

1. those that involve measuring distances to objects in space, usually artificial satellites

(using either lasers or radio waves), though laser ranging measurements to the moon

have also provided useful geophysical information.

2. a method that compares radio signals from quasars received at two widely separated

radio antennas (called very-long-baseline-interferometry — VLBI).

The satellite techniques can also provide information about the earth’s gravity field.

The lunar ranging technique tells you about the moon. And the VLBI technique tells



2.5. POSITIONING 43

you about the structure of quasars.

2.5.2.1 Satellites

These have been used for geodetic purposes for 30 years or more. The first satellites were

“passive,” and were used to tie local or regional survey lines together. This was done

by observing the satellite and determining its coordinates from each line, simultaneously.

This was particularly useful for tying surveys together across large bodies of water. Before

satellites people used flares for this purpose, although those weren’t good over as long

a distance. For this application, you don’t care about the satellite’s precise position, so

long as you can see it.

Nowadays, all satellites which give scientifically useful results are “active.” You track

the satellite from the ground, to determine its distance away from you. If you know where

the satellite is in some terrestrial or inertial space coordinate system, you can then figure

out where you are in that same coordinate system. To know where the satellite is, you

must have information about the earth’s gravitational field, since that field determines

the satellite’s orbit. Conversely, you can use the observed orbit to better constrain the

gravity field.

Actually, the first useful information from these satellites was better information

about the gravity field. That’s because, initially, satellite orbits could be modelled much

less accurately than could the positions of the ground stations. As the gravity field im-

proved, the orbit errors became small enough that people could begin to use the satellite

results to determine variations in the earth’s rotation better than could be obtained using

traditional astrometric methods. And now, and for the last 5–10 years or so, people have

been able to see the tectonic motion of individual ground points. During all this time, of

course, the gravity field results have continued to improve.

To maximize the gravitational and positioning applications from a geodetic satellite,

the orbit should have a high inclination (the angle between the orbital plane and the

equator) so that the satellite ground track covers as much of the earth as possible. To

solve effectively for the orbit, and to use the orbital results to learn more about the
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earth’s gravity field, a geodesist must deal with certain non-gravitational orbital effects.

These include:

Atmospheric drag

You can reduce this by going to a high orbit where there’s not much atmosphere.

This also tends to reduce the effects of uncertainties in the gravity field, since those

die away rapidly with altitude. On the other hand, if your goal is partly to learn

about the gravity field, then you want to be closer to the surface.

Solar and terrestrial radiation pressure

This is hard to deal with. You either model it empirically, or try to average or filter

it out.

Differential gravity acting across a satellite

A a satellite is not a point mass, and gravity is not uniform across it. This can

cause motion of the satellite which might affect the geophysical observations, but

which tells you nothing about the earth. The best solution is to make the satellite

spherically symmetric, though this cannot always be done.

The earliest active satellites had flashing lights. You tracked them against the stellar

background using cameras, and so learned something about the orbit. These methods

are no longer used.

Now there are two methods used to range to a satellite. You can use radio waves,

which originate from the satellite and are recorded on the ground. Or, you can use lasers,

which sit on the ground and reflect a light beam off of the satellite.

The laser satellites have all been designed primarily to do geophysics. They are used

to find the positions of the lasers, while also providing information about the gravity

field. There have been several of these: GEOS1, GEOS2, Starlette, GEOS3, PAGEOS,

LAGEOS I and II, and more recent satellites launched by Japan and by the Soviet Union.

So far, the LAGEOS satellites have proven to be the most useful of these.

Most of the radio-ranging satellites are designed primarily for navigation, and are

funded by the US Department of Defense. Geodesists have usually been able to use these
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satellites for scientific purposes. I will describe the radio-ranging satellites first.

2.5.2.1.1 Radio Ranging Satellites The navigation system used today by the De-

partment of Defense is the Global Positioning System (GPS). This system measures phase

shifts/time delays of radio signals transmitted from a constellation of GPS satellites.

Prior to GPS, Department of Defense navigation was done using Doppler measurements

of satellite-based radio transmissions. Both these techniques will be discussed here.

2.5.2.1.1.1 Doppler Satellites When this navigation system was operable, there

were six Doppler satellites orbiting the globe at any one time. In this technique, each

satellite transmits radio waves of known frequency, fS. The satellite oscillators are stable,

so that fS is known very well. The signal is recorded at a receiver on the ground, and

the frequency, fR, is measured. fR 6= fS, because the satellite is moving with respect to

the ground. Specifically:

fR = fS

[
1 +

(vS − vR) · r̂
c

]

where vS, vR = source and receiver velocities, and r̂ = unit vector from source to receiver.

If ρ = the range between the source and receiver, then

(vS − vR) · r̂ = −∂tρ = − range rate.

So,
fR − fS
fS

= −∂tρ
c
. (2.14)

So you can find ∂tρ by measuring fR. Because you know the satellite orbit (supplied by

the Department of Defense, as determined from about a dozen fixed tracking stations),

you can use the results for ∂tρ to determine your position. The results from the fixed

tracking stations could also be averaged together to give earth’s rotation results that

were considerably better than those obtained by observing stars with telescopes. The

positions of the fixed stations could be determined to a few tens of cm — close to 1 m.

So it was not good enough to measure continental drift effectively, for which you’d like

accuracies closer to 1 cm.
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The accuracy limitations for this technique were mostly instrumental. But there were

external systematic effects active here which affect all radio transmission-type satellites,

and so I’ll describe them here.

The problem is, as for all space-geodetic experiments, you must know the velocity of

the radio wave. That means, you must know the index of refraction, n. For example, the

c in Equation 2.14 should really be c/n.

We saw, earlier, that at optical frequencies n depends on the dry air density and on

the density of water vapor along the path. The same is true for radio waves, except that

in the radio band the atmosphere is not dispersive. That is, n is approximately frequency

independent and so, unlike with the two-color geodimeters, it does not help to use two

radio frequencies. Another difficulty that is not an issue at optical frequencies, is that at

radio frequencies n depends on the number of charged particles (ions) along the path. So,

n is perturbed relatively strongly in the ionosphere (the region from 100 km to several

hundred km altitudes above the earth).

Of these effects on the index of refraction, the ionospheric effect is the largest at

radio frequencies. It can cause tens of meters of position error if uncorrected. Luckily,

the ionospheric effect is dispersive at radio frequencies. So the way to get around this

problem is to range at two radio frequencies. n has the form n = 1 + γρion, where γ

depends on frequency and is known, but where ρion, the ion density along the path, is

unknown. By combining the ranging results for the two frequencies you can infer ρion,

which allows you to deduce n. The result for n can then be used with either one of the

range measurements, to compute the receiver-satellite distance (or to give the range rate,

in the case of the Doppler satellites).

The second largest effect is from the dry air. If uncorrected, it can perturb the inferred

receiver-satellite distance by approximately 2 meters. For all radio satellite techniques,

people usually model this effect by using surface pressure and temperature observations in

some semi-empirical atmospheric model. This seems to work well, as long as the satellite

isn’t too low in the sky. (It is harder to model the horizontal variations in pressure and

temperature, than it is to model the vertical variations.)
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One of the most important advantages that space geodetic techniques have over

geodimeters, is that people don’t have to worry as much about the dry air using the

space techniques as they do when reducing geodimeter data; at least not over long base-

lines. For example, if you measure a 1000 km baseline with geodimeters, you must range

through 1000 km of atmosphere — and all near the ground where the atmosphere is dens-

est. But with satellites (either radio or laser ranging) you’re looking upwards through

only a few tens of kms of atmosphere at each point. And, much of that atmosphere is

thin. So, the total effects of atmospheric refraction are greatly reduced using the space

techniques. On the other hand, the atmosphere can make satellite techniques less useful

at very short baselines, since those measurements always involve ranging through a few

tens of km of atmosphere, no matter how short the baseline is. Still, there are techniques

designed to measure the two ends of a baseline simultaneously (such as GPS and VLBI,

described below). And in those cases, atmospheric errors at the two endpoints tend to

cancel, making the the atmosphere less of a problem. In general, the dry air error can

be reduced to the 1–2 mm level.

The third largest effect is the water vapor density. It’s not important enough to affect

the Doppler data, given the relatively large error bars of the Doppler data. But, it is a

limiting error source for GPS and VLBI (see below). The effect of water vapor on n gives

position errors that can vary widely, from 5 to 30 cm. Because vapor density is highly

variable spatially, it is hard to model. One procedure is to make surface atmospheric

observations and to use them in an empirical formula. A related, and very effective

alternative, is to solve for both the dry air and water vapor effects using the ranging

data, right along with station positions and clock errors. This is possible because as

the satellite moves across the sky, the total amount of atmosphere along the range path

varies as the cosecant of the satellite’s elevation angle. The amplitude of the cosecant

term is proportional to the average density along the path, and can be included in the

set of solution parameters.

People are also experimenting with water vapor radiometers, which are instruments

that point at the sky and detect microwaves emitted by water vapor. The instruments
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measure microwave amplitudes at two frequencies. The results are fit to an empirically-

determined microwave emission curve for water vapor, and this allows the total vapor

content along the path to be determined.

The goal of all these methods, at least for GPS and VLBI, is to model the effects of

water vapor to the sub-cm level, even during moderately stormy weather.

2.5.2.1.1.2 GPS (Global Positioning System) The Department of Defense’s pri-

mary navigation system consists of 24, radio-transmitting, GPS satellites. Although the

system was designed solely for navigation purposes, geodesists and geophysicists have

found that it can also be used for high-precision geodetic positioning. In fact, it is proba-

bly fair to characterize the scientific GPS effort as one of the most promising and visible

programs of any sort in geophysics.

The GPS satellites are at about 20,000 km altitude, and have about 12-hour orbits.

Because the altitude is so high, the satellites experience little atmospheric drag. On the

other hand, this high orbit means that the GPS satellites can not provide any information

about the earth’s gravity field that is not given much better from the lower-orbiting laser

ranging satellites described below. The satellite orbits are chosen so that at least six

satellites are visible at any time from any point on the earth’s surface.

Here is a description of how the system operates for navigational applications: Each

satellite emits a radio signal — the carrier. The signal is modulated by inserting abrupt

180◦ phase shifts. The phase shifts are inserted at irregular times, according to a secret

code. If you record the signal and have a code book you can figure out the times at which

certain bits of the signal left the satellite. You have an accurate clock at your receiver.

By comparing the transmission and arrival times, and correcting for atmospheric, etc.,

effects on n, you can deduce the distance to the satellite. The transmitted signal also

includes information about the satellite orbit, so that you know the location of the source

of the transmission. From simultaneous results to four satellites, you can then solve for

the three components of your position and for the offset of your clock with respect to

the satellite clocks (the satellite clocks are controlled from a central command point
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on earth, and are kept synchronous). In this way, you can instantaneously determine

your position to a few meters. There’s a non-secret, “civilian” code that allows you to

determine positions to about 15 m, though the Department of Defense now routinely

degrades the satellite transmissions (using what they call “selective availability”) so that

civilian accuracies are usually closer to 100 m.

Because GPS is a radio technique, it is sensitive to the sort of atmospheric problems

described above for the Doppler satellites. The ionospheric effects are removed by trans-

mitting at two frequencies from each satellite. The dry air and water vapor effects are

not important at the level of accuracy needed for navigation.

There are two problems that must be overcome in order to use the GPS satellites to

do geodesy. First, it is hard to gain access to the secret code. Second, a few meters is,

of course, not accurate enough for modern geophysical-geodetic applications.

As it happens, the code is not a useful part of the signal to geophysicists. The

frequencies of the code are near 10 MHz, which corresponds to modulation wavelengths

near 30 m. To do 1 cm geodesy, you’d have to determine the phase accurately to

1 cm

3× 103 cm
≈ 3× 10−4,

which would not be easy.

Instead, what geodesists want to do is to remove the code and just work with the

carrier. The carrier wavelength is about 20 cm, so is more manageable. There are about

a half-dozen commercial receivers being used now to do geodesy. They are all portable,

ranging from about 20–100 lbs. Different receivers use different techniques for removing

the code. One method, for example, involves squaring the signal. The 180◦ phase shifts,

which just reverse the sign of the carrier, then disappear. Alternatively, some instruments

require the code which is removed directly from the recorded signal.

The general strategy is to receive a satellite’s signal at each end of a baseline. The

code is removed from both signals, and the phase at some specified time is recorded

at each end (the receiver must include an accurate clock). The two phase results are

brought to some central processing site and compared. The phase difference, together
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with information about n in the atmosphere, gives the difference in distances between

the satellite and the two endpoints. See Figure 2.18.

A B

satellite

D

Figure 2.18:

There is still the 2π ambiguity problem. For example, you use the observed phase

shifts to deduce that the distance D is D = lλ + (known remainder), but you don’t

know the integer l. To find l, you observe over an hour or two. The satellite moves

around during this time in a known way (you know the orbit), and with enough data you

can remove the 2π problem and find D. This is equivalent to changing the wavelength

slightly in geodimeters. Here, instead, you keep the wavelength the same but change the

distance in a known way. With four satellites (though you don’t need this many if you

wait a sufficiently long time) you can find all three components of the baseline, including

its length.

Orbit errors are a potential problem. The Department of Defense determines orbits

only to about 20 m accuracy, using a set of fixed ground stations. This is not accurate

enough for geophysical applications. So geodetic users have pooled resources and es-

tablished centers for determining and distributing more accurate satellite orbits. These

centers now routinely determine the orbits to 20 cm, or better. One of the main reasons
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that these orbits are so much better than the Department of Defense’s orbits, is that the

DOD orbits are predicted orbits: they must be predicted beforehand, so that they can be

transmitted down to the user. On the other hand, the geodetic orbits use tracking data

from stations around the globe to fit the orbital parameters. They are typically made

available to the geodetic community several weeks after the signals have been recorded.

A 20 cm orbit error maps into a smaller than 20 cm error in the baseline. Specifi-

cally, the errors in the baseline components corresponding to a δ meter orbit error are

approximately
δ meter

2× 107 meter
× L, (2.15)

where 2× 107 meter is the satellite altitude, L is the baseline length, and δ is the orbit

error in meters.

To see an example of this, suppose the satellite is directly above the midpoint of the

baseline. See Figure 2.19. Then you would measure no phase difference between the

L

δsatellite

Figure 2.19:

signals received at the two endpoints. Instead, though, suppose you think the satellite

is at a position a horizontal distance δ from where it really is (so δ is the orbit error).

Since you measure no phase difference, you conclude that the baseline is rotated through

the angle θ from its actual orientation. See Figure 2.20. Roughly, θ ≈ δ/H, where H is

the satellite altitude. And so the error in the vertical component is Lθ ≈ Lδ/H, which

is the same as Equation 2.15.
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real orientation

your deduced
orientation

error

θ

L

Figure 2.20:

So a 20 cm error in the orbit would give baseline accuracies of 10−8, which is not bad

for short and medium length baselines. It turns out that you can sometimes do even

better than this by using your GPS data to estimate your own orbital corrections to the

geodetic orbits, at the same time that you estimate station positions.

Another important error source is the water vapor density along the path. This

affects mostly the vertical components of baselines. The effects are reduced by either

(1) using ground-based meteorological measurements; (2) using radiometers; (3) fitting

the atmospheric effects using the GPS data themselves.

Present accuracies seem to depend on baseline length, though not necessarily in a

linear way. Baselines of less than about 1000 km have accuracies of a few mm in the

horizontal and less than about 1 cm in the vertical, for averaging time of a few days. For

baselines greater than about 1000 km, the orbit error dominates and relative accuracies

are about 10−8, with 10−9 sometimes obtained. That (10−9) works out to 1 cm accuracy

over 10,000 km.

GPS has had a large impact on conventional surveying, as well — even where they

don’t need these high accuracies. One problem with conventional methods (leveling,

geodimeters) is that they are line-of-sight. To range from A to B, you’ve got to see from
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A to B. Often, trees and hills, etc., get in the way. Then the geodesist must build towers

that stick up above the projections, and range between the towers. With GPS that’s not

necessary, since you’ve only got to see the sky. The initial equipment investment is high

for GPS (tens of thousands of dollars for one receiver), but the operating costs are only

about 5% of conventional operating costs.

One other potential application of GPS is to put the receivers in other scientific

satellites to monitor the positions of those satellites. In many cases, this may give

accuracies significantly better than can be obtained with other methods. Probably its

main advantage is that it allows the satellite to be tracked continuously, so that the orbit

determination process requires far less dynamic modeling than is required for other forms

of tracking. For other tracking techniques the satellite is out of view most of the time,

and so dynamic force models must be used to estimate the satellite’s position over the

entire orbit.

2.5.2.1.2 Laser ranging satellites The most useful laser ranging satellites have

been the NASA satellite LAGEOS, launched in 1976, and a nearly identical satellite,

LAGEOS II, launched in 1993. Other NASA LAGEOS-type satellites are being proposed.

And, there have been similar satellites launched over the past few years by other countries,

including Japan and the Soviet Union.

2.5.2.1.2.1 LAGEOS (LAser GEOdetic Satellite) LAGEOS is a small (60 cm di-

ameter), heavy (about 400 kg) sphere covered with reflecting corner cubes. A laser on

the ground sends a pulse of light up to the satellite. The light is reflected and returns

to the laser, where it is detected. The round trip travel time is measured, which gives

the range between the satellite and the laser. (Using a continuous laser and measuring

phase differences would require too much power.) The orbit altitude is about 6000 km.

That’s high enough to get the satellite out of most of the atmosphere, but low enough to

keep it within reach of moderately powerful lasers. LAGEOS is more sensitive to lateral

variations in the earth’s gravity field than are the GPS satellites (20,000 km elevation),

and that’s both a disadvantage and an advantage. It’s a disadvantage because it means
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that uncertainties in the gravity field can make it more difficult to model the orbit ac-

curately. But it’s an advantage in that it means that LAGEOS is able to provide useful

information about the earth’s gravity field, in addition to its role in point positioning.

LAGEOS is tracked by about 20–30 fixed stations. Results from these stations are

used to give the orbit, which then provides information about the earth’s gravity field.

The results are also routinely combined to determine variations in the earth’s rotation,

and to give the the tectonic motion at the stations.

There are also about half a dozen mobile layers. The smallest of these are housed in

small trucks and fit easily into a plane. They can be taken to a point to determine the

position, and then brought back again later to see if the point has moved. It may take

several weeks at a spot to fix its position, and ranging must be done in clear weather. Note

that this technique gives the position of a single point: it does not require simultaneous

observations from two ends of a baseline.

The laser systems vary in accuracy. The fixed stations have more powerful lasers,

and so are more accurate. The best lasers are able to range with precisions of better

than 1 cm for a single pulse, and of about 1–3 mm for a normal point (an average of the

individual pulses over a few minutes). Not all the fixed lasers are this good. Some of

them are probably at least an order-of-magnitude worse.

There are two sources of systematic errors that make the final positioning accuracies

worse than might be inferred from the laser precisions alone. One is atmospheric refrac-

tion. Refraction problems are less severe at optical frequencies than at radio frequencies.

The ionosphere has virtually no effect, and the effects of the dry and wet air components

are smaller. Still, uncertainties due to the dry air density can often be important at

almost the 1 cm level. One way of reducing that error in the future might be to lase

at two optical frequencies, and then to use the known dispersive properties of dry air at

optical frequencies to solve for the index of refraction. This, of course, is the approach

used in multi-color geodimeters.

The other important systematic error comes from uncertainties in modeling the satel-

lite orbit: uncertainties both in the gravity field and in the non-gravitational forcing. At
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present, radial orbit errors are probably 1–2 cm, which probably translates to about a

1 cm error in position measurements. Note the difference from GPS, where a 1–2 cm

orbit error would likely translate into a much smaller position error. That’s because GPS

observes from both ends of a baseline simultaneously, whereas LAGEOS does not. Thus,

the orbit errors tend to cancel in GPS.

A related instrument in NASA’s future plans, is the GLRS (Geoscience Laser Ranging

System), that may be part of NASA’s EOS (Earth Observing System) program. GLRS

is proposed as a laser orbiting in space, measuring distances to retro-reflectors scattered

over the earth’s surface.

2.5.2.1.3 Lunar Laser Ranging (LLR) This technique is similar to satellite laser

ranging. You measure the round trip travel time of laser pulses reflected off of corner

cubes left on the moon’s surface by Apollo astronauts and by unmanned Soviet spacecraft.

LLR was initiated in the 1960’s, so it’s an older experiment than LAGEOS. There are

three U.S. and two Soviet reflectors on the moon. Most of the existing lunar ranging

data come from two laser stations, one in Texas and one in France. The Texas station

has been operative, in one form or another, since the inception of the experiment some

25 years ago.

You need much more powerful lasers, here, than for LAGEOS. Depending on the

pulse duration, between 1014 and 1020 photons leave the laser and head towards the

moon. But, on average, less than 1 photon is in the returning beam. At present, the

earth–moon distance can be determined to 1 cm when averaged over a few minutes.

These are the objectives of LLR, as originally stated in the 1960’s:

1. determine the lunar orbit

2. determine the positions of the retroflectors — to give control for lunar geodesy and

mapping

3. determine the “librations” of the moon (rigid body rotations of the moon about its

principal axes)
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4. determine the positions of the lasers

5. determine the rotation of the earth

6. test general relativity

The orbital motion has been determined extremely well — maybe three orders of

magnitude improvement over earlier results. This has helped constrain our knowledge

of tidal energy dissipation on earth (the relevance of one to the other will be discussed

later in the course). Also, the orbit has been used to look for the Nordvedt effect.

This is a difference between the gravitational and inertial masses of the moon, due to

gravitational self-energy of the moon. It is predicted by some gravitational theories, but

not by relativity. LLR has shown the effect is 0 to within an observational error.

The observed lunar librations give the lunar moments of inertia, and some other

gravity harmonics. People have noticed large phase shifts between the librational motion

and external torques These results have been tentatively interpreted as possible evidence

of energy dissipation within a fluid lunar core.

LLR gives information on variations in the earth’s rotation, particularly on the rate

of rotation, and has proven useful for constraining the longest period terms of the earth’s

nutational motion. In general, though, rotational motion can now be obtained more

accurately using other techniques. LLR has not given much useful tectonic information,

because there have been so few stations lasing to the moon.

2.5.2.1.4 VLBI (very-long-baseline-interferometry) VLBI is similar in spirit to

GPS, but for VLBI the radio signal comes from a quasar instead of from a satellite.

VLBI was developed to do radio astronomy. You have two radio antennas a long

distance apart (up to several thousand km). You observe the same radio source from

each end, simultaneously, and compare results. This sort of emulates one enormous

antenna, and so is useful for studying the very long wavelength radio waves emitted

by quasars. The results are used to investigate the positions and structures of quasars

(believed to be extremely distant galaxies in formation).
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People realized, early on, that you could use VLBI to do geodesy, too. If you measure

the time delay between the signals, you can solve for a component (‘d’ in Figure 2.21) of

the baseline between the two points.

d

radio waves

Baseline

Figure 2.21:

If you measure time delays for four different quasars, you can solve for all three

components of the baseline, plus the clock difference between the two sites. Usually,

people look at about twelve sources per day.

Here is how VLBI works as a geophysical experiment: You receive the radio signal,

which has content across a wide band of frequencies. You filter the signal to get a

reasonably pure frequency, and record the signal on tape. You then take the tape to a

central site and compare it with a similar tape from the other antenna. Both tapes have

accurate time marks on them. You use the time marks to deduce the phase shift between

the two signals, by cross-correlating the two tapes.

The wavelength of the signal is about 3 cm. So the 2π ambiguity is about 3 cm. With

geodimeters, you reduce the problem by changing the wavelength slightly and ranging

again. You do the same sort of thing with VLBI. That is, you keep reasonably broad

sidebands when you filter. So on your tape you’ve really got a band of frequencies, and

you cross-correlate the whole band. This reduces the 2π problem to about 30 m. Often

you already know the baseline to 30 m. If not, looking at twelve sources instead of just
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four can resolve the problem.

Incidentally, why not choose an even a wider band of frequencies, to reduce the 2π

problem further? One reason is that this would require too much data storage and

handling. Also, without extra effort, it’s harder to get accurate phase delays when cross-

correlating signals with lots of frequency content.

2.5.2.1.4.1 Problems

ionospheric effects on n

As with GPS and Doppler, you remove the ionospheric effects by recording data at

two radio frequencies, and using the known dispersion to pull out the ion content.

dry air

As in GPS and Doppler: radio waves are non-dispersive to the dry air effect on n.

Typically, the effect on baselines is about 2 m. It can be corrected to about 2 mm

(0.1%) by using surface data and by estimating the effect directly from the data as

the quasars move across the sky.

water vapor

This is probably the limiting error source for VLBI. Again, as in GPS, the un-

corrected effect is typically 10 cm, but can be as large as 30 cm. The signal is

non-dispersive to the effects of water vapor. You use surface measurements or

radiometers or estimate the effect directly from the VLBI results.

2.5.2.1.4.2 Accuracy For the best determined VLBI baselines, the horizontal base-

line components can probably be determined to 1–3 mm and the vertical components

to maybe 7–12 mm, or so. Some (most?) baselines can not do this well. The vertical

is worse than the horizontal, because the vertical is affected more by tropospheric (i.e.

water vapor) errors.
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2.5.2.2 Advantages of one space positioning technique over another

The three space positioning techniques are VLBI, SLR (satellite laser ranging), and GPS.

(LLR doesn’t provide positions of enough points to make it competitive.)

1. VLBI results are not affected by satellite orbit errors, but SLR and GPS are.

(Conversely, VLBI can’t give the gravity field, whereas SLR can.)

2. VLBI and GPS are all-weather. SLR needs clear skies.

3. GPS fits in a jeep easily; in fact, it can be carried around by hand. Mobile SLR

instruments fit in a small truck. Mobile VLBI requires a tractor trailer.

4. VLBI and GPS can do short baselines better than SLR. (VLBI and GPS may not

be as good as the very best geodimeters over very short baselines.) That’s because

VLBI and GPS are differencing techniques, so that the errors tend to cancel over

short baselines. SLR is usually used as a single-point technique, so that the errors

don’t cancel as effectively.

5. VLBI and SLR do long baselines better than GPS, at least at the moment. Orbit

problems limit GPS at long baselines, though the orbits are continually improving.

6. SLR can probably determine vertical positions better than GPS and VLBI, because

of its relative insensitivity to tropospheric errors.

2.5.2.3 Some Results

It is hard to determine the accuracies of these various techniques. Inter-comparisons be-

tween different techniques are valuable, but are not often done. (When inter-comparisons

have been done in the past, people have often found discrepancies between techniques

of 2–3 cm, which is larger than would be inferred from the usually accepted accuracy

estimates for each technique individually.) Instead, the usual approach is to look at re-

peatability: you measure the same baseline over and over again, and compare the results.

The resulting scatter gives an estimate for the accuracy. This estimate, though, is only
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a lower bound for the total error, since there is usually no guarantee that you don’t have

systematic errors that are constant over the entire observing period.

People are now obtaining results from all of these techniques (GPS, SLR, VLBI) that

agree pretty well with geological models of plate motion on a global scale. The rates

of motion obtained by fitting linear trends to baseline measurements over several years,

are usually in line with the geologic rates predicted by paleomagnetism. It suggests that

plate motion is probably reasonably steady in time: that the plates move about the same

over a few years as they do over millions of years.

Not surprisingly, geodetic rates do not always agree with geological rates near plate

boundaries. Plate boundaries are often areas with substantial local and regional defor-

mation, due to the stresses caused by the plates moving past one another. California,

where the Pacific and North American plates are sliding past one another, is perhaps the

most intensely studied of these boundary regions. The state and the surrounding region

is crossed by numerous leveling and geodimeter lines, and is extensively monitored with

GPS, VLBI, and SLR instruments. To get an idea of the amount of regional deformation,

note that the NUVEL-1 geological plate motion model predicts about 46 mm/yr relative

motion between the Pacific and North American plates. Of this amount, about 12 mm/yr

occurs across the San Andreas fault. There are numerous faults associated with the plate

boundary, however, which are often collectively referred to as the San Andreas Fault Sys-

tem. The total slip across this entire system is closer to 35 mm/yr, which is still less

than the total plate motion rate. Most of the difference comes from the spreading of the

Basin and Range region (i.e. Nevada and portions of surrounding states), which has been

detected, using space geodetic techniques, to be between 5 and 7 mm/yr. Most of the

remaining discrepancy is apparently due to motion on faults outside of the San Andreas

Fault System, as it is usually defined. When the geodetic rates over this entire region of

western North America are added up, the disagreement with the NUVEL-1 plate motion

model is only at the 1–2 mm level, which is probably insignificant.
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2.5.2.4 Altimeters

This is another sort of satellite ranging technique. It’s not really a point positioning

technique, but it has geophysical, geodetic, and, most of all, oceanographic applications.

The goal is to map the shape of the sea surface as a function of time. It works like

this: A radar pulse is emitted by the satellite and reflected off the ocean surface, from

which it returns to the satellite. The round trip travel time of the pulse is measured,

and so the distance between the satellite and the ocean surface can be determined. The

satellite is also tracked from the ground, using either lasers or radio signals (or both), to

obtain the satellite orbit in a geocentric coordinate system. By combining these results,

you can determine the geocentric locations of the sub-satellite points on the ocean surface

(the points from which the radar pulses are reflected), and so determine the shape of the

sea surface. The area of the sea surface sampled by the radar pulse is about 20 km2. So,

the effects of waves and other local disturbances tend to average out. The cancellation is

not perfect, and some effects of sea surface roughness do affect the data. But, even these

can be largely removed, because the roughness also affects the shape of the returning

pulse and so can be determined. In fact, one of the indirect goals of altimeters is to

relate the observed roughness to local wind speed.

Altimeters can also range to land and ice, in principle. But land and ice topography

can vary considerably over 20 km2, and so the topographic effects tend not to average out

effectively in the returning pulse. In fact, altimetry is not a generally useful technique

for determining the shape of the land surface. It has, however, proven useful in mapping

large ice sheets.

Why do you want to know the shape of the sea surface? One reason is that the sea

surface should be nearly a surface of constant gravitational potential. Thus, the shape

of the surface provides information about the gravity field over the oceans. The short

wavelength features (tens to a few hundreds of km) in the gravity field are due, mostly,

to the mass of the underlying sea floor topography. So, the data let you deduce accurate

maps of ocean bathymetry. The longer wavelength features can tell you about the earth’s

interior, though the longest wavelength features (wavelengths longer than about 800 km)
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can also be determined using other means (i.e. from SLR).

By determining the sea surface, you can also learn about ocean currents. In fact,

oceanographic applications are the primary justification for modern satellite altimeter

missions. The sea surface will not exactly coincide with a surface of constant potential

(that surface is called the “geoid”), because of vertical displacements associated with

horizontal currents. What happens is that the Coriolis force due to the currents is

balanced by pressure forces caused by the departure of the surface from the geoid. The

excess height above or below the geoid can be as large as a meter or so, though it is

usually much less than that. So if you know the height above the equipotential surface,

you can then learn about the currents. To learn about the time-averaged mean currents,

you must know the geoid by some independent means. To learn about time dependent

variations in currents, however, you don’t need the gravity field. You only need to assume

that the geoid doesn’t change with time.

Outside of early testing, the useful altimeter satellites have been SEASAT, GEOSAT,

ERS and TOPEX/Poseidon. All of these satellites have had to deal with atmospheric

propagation errors, just like any radio technique. The ionosphere is removed by looking

at two radar pulses which have different frequencies. The dry air is removed by using

surface meteorological observations (usually in the form of gridded, global models gen-

erated by meteorological centers). The wet air is sometimes removed by using those

same meteorological data. Better, though, is to use downward-pointing water vapor

radiometers.

SEASAT:

SEASAT was launched in 1978 by NASA. It was tracked from the ground using

lasers. It gave excellent results for the geoid, and then short-circuited after about

three months. The precision of the on-board altimeter was about 5 cm. The main

limitation on the accuracy was uncertainties in the radial component of the satellite

orbit. The orbit accuracies achieved at the time were on the order of 1 m for global-

scale wavelengths, which maps directly into a 1 m error in sea surface. Accuracies

were much better (about 10 cm) for time-dependent, short wavelength variability.
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The earth’s gravity field is known much better today than it was during the time

of SEASAT. These new gravity field models have recently been used to re-fit the

SEASAT orbits, to obtain global-scale accuracies of about 20 cm.

GEOSAT:

GEOSAT was launched in 1985 by the U.S. Navy. Data from the first 18 months

were classified up until 1995, when they were released to the general public. During

that initial phase of the mission, the satellite had very dense ground tracks, so

bathymetry could be estimated in considerable detail. After that, the satellite

orbit was changed, so that the ground tracks were less dense (several tens to about

100 km spacing), but so the satellite would repeat the same track every 17 days.

The data from this part of the mission were released to the public as they were

obtained. GEOSAT was turned off in early 1990. Orbit accuracies at the time

were on the order of 50 cm at long wavelengths, which translates to about the

same accuracies in the sea surface. The accuracies were much better at shorter

wavelengths. Recent re-analysis of the data using improved gravity field models

has resulted in orbits that are accurate to 10 cm at even the longest wavelengths.

TOPEX/Poseidon:

TOPEX/Poseidon was launched in 1992. It is a joint NASA/French mission. It is

still functioning normally, and is expected to continue to return data for at least

several more years. TOPEX/Poseidon is tracked with lasers and with radio signals;

and there is also an on-board GPS receiver. Before launch, it was expected to be

accurate to about 14 cm, with the limitation coming primarily from uncertainties in

the orbit. But because of impressive and unanticipated improvements in knowledge

of the gravity field, people have found that the orbital errors are probably closer

to 3–4 cm, and that the total TOPEX/Poseidon sea surface error budget from all

sources and for all wavelengths, is probably about 5 cm.

ERS:

ERS-1 was launched in 1991 by the European Space Agency. I don’t know how
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accurate it is, though I do know that its orbit solution is less accurate than

TOPEX/Poseidon’s.

2.5.2.5 Dedicated Gravity Mission

The best models of the earth’s global gravity field come from satellite laser ranging.

Tracking of LAGEOS, in particular, has provided most of the high-quality, long wave-

length data used in recent gravity solutions. In the most complete models, the SLR data

are supplemented with satellite altimetry data to provide short wavelength information

over the oceans, and with surface gravity data to improve the short wavelengths over the

continents.

Characteristics of the individual gravity models depend on the scientific objectives.

The best models for satellite orbit solutions are spherical harmonic expansions of the

field, complete through degree and order of about 70 (corresponding to half-wavelengths

of about 300 km at the earth’s surface). The highest resolution models intended for

surface gravity studies are complete to degree and order 360, which corresponds to a

half-wavelength of about 50 km.

The accuracies of these models are somewhat uncertain. Differences between geoid

heights deduced from the surface gravity and the satellite gravity models, are typically on

the order of 1/2 m rms when averaged over all half-wavelengths longer than 400 km, with

differences as large as several meters in certain regions of the globe. These differences

are much larger than those predicted from formal error estimates, and they are probably

largely due to the complications of incorporating hundreds of different ground-based

gravity profiles into the global solution.

There has long been interest within the geophysical community, in improving the

gravity field down to very short wavelengths through the use of a dedicated satellite

gravity mission. Results from such a mission would be useful to oceanographers, as

well. To determine the time-averaged mean currents from satellite altimetry data, an

oceanographer needs to know the geoid. Given the estimated accuracies of existing geoid

models, it is not possible to obtain reliable results for the time averaged mean currents
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at wavelengths below 2000–3000 km.

Dedicated gravity missions have been proposed, in various forms, several times over

the past few decades. Such missions are always near the top of NASA’s, or ESA’s (the

European Space Agency’s) priority list, but so far they have never made it to launch.

At the moment, several proposed missions are being considered. All of them involve

low altitude satellites, with altitudes of, typically, several hundred km. LAGEOS, and

other existing laser ranging satellites, can’t give good results at shorter wavelengths

because their altitudes are too high: short wavelength anomalies die out quickly with

altitude. All of the newly proposed missions would lead to gravity field improvement of

several orders of magnitude at all wavelengths, and would determine gravity accurately

down to spatial scales as short as 100 km.

These proposed missions involve different satellite designs. One idea is to use two

satellites. They are ranged both from the earth and from each other. This allows you

to accurately determine the effects of the gravity difference between the two satellite

positions. You can ‘tune’ the orbit to get high sensitivity at certain desired wavelengths.

For example, you couldn’t easily detect 300 km wavelengths if 300 km were the satellite

separation distance, because those wavelengths would cause the two spacecraft to move in

phase with no change in the satellite-to-satellite range. You’d get maximum out-of-phase

motion for separation distances equal to an odd number of half wavelengths.

Another proposed idea is to use a single satellite with an on-board superconducting

gravity gradiometer to measure spatial derivatives of gravity. The gradiometer detects

relative motion of 6 closely-spaced proof masses. The entire instrument is only a few tens

of cm on a side. The gradiometer is superconducting to reduce Brownian motion of the

proof masses which might otherwise be mis-interpreted as gravity signals.
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Chapter 3

Potential Theory

This chapter describes the mathematical theory of gravity. It pretty much reduces to a

study of Poisson’s equation. Much of the material may look familiar, because it is similar

to what you see in a course in electrostatics. Later in this course, we will apply these

results to learn about the earth.

3.1 Introductory remarks

The problem Newton posed was: given a density distribution, can you find the gravita-

tional field? He solved that problem by formulating Newton’s Law of Gravity. Another

type of problem that often comes up when dealing with the earth’s gravity field, is: given

a volume V bounded by a surface S, and given some information about gravity on S, can

you find gravity inside V? In this case, V may or may not contain a mass distribution.

Both these types of problems are best solved using the gravitational potential, rather

than g. The potential is a scalar, and scalars are easier to work with than vectors. (g is

the gradient of the potential.) The boundary value problem is then: given information

about the potential on S, what is the potential in V? The solution to this problem exists

and is unique, as long as the right sort of boundary conditions are specified on S. The

‘right’ boundary conditions are that the potential is specified everywhere, or that the

normal gradient of the potential is specified everywhere, or that one is specified over part

67
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of S and the other over the rest of S. But they can’t both be specified at the same places

— that’s too much information and, in general, a solution won’t exist. (Though for a

real situation, of course, the potential on S and the normal gradient of the potential on

S will both be consistent with a solution in V.)

Consider the earth, where S is the earth’s surface and V could be the volume either

outside or inside the earth. What sort of gravity information is available on S? Well,

people measure the gravitational acceleration on S. And there are also leveling data,

which give the direction of the gravity vector with respect to the surface normal. Thus

you know the magnitude and direction of g, which means you know all three components

of g on the surface. In terms of the potential, this means you know both the potential

and the normal component of the gradient of the potential on the surface S. Only, you

don’t know S.

Finding S from these boundary conditions is one of the fundamental mathematical

problems in physical geodesy. It’s called “Molodensky’s problem.” What you’re after

is the shape of the earth. There is no known closed-form mathematical solution to this

problem. It is usually solved iteratively, as we will discuss later. In practice, the problem

is further complicated by observational errors and incomplete data. We will not give a

rigorous treatment of Molodensky’s problem here. Instead, we will concentrate on the

more familiar and more tractable problems:

1. given the density distribution, find the potential;

2. given information about the potential over a known surface, find the potential in

the volume bounded by that surface.

First, let’s deal with 1.
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3.2 Finding the gravitational field from knowledge

of the density

For a point mass M at x′, the gravitational acceleration at x is:

g(x) = −GM(x − x′)
|x− x′|3

(3.1)

where G = 6.672×10−8 cm3/gm s2. If a mass m is placed at x, then the gravitational force

on m is F = mg(x). For a continuous mass density ρ(x′), you replace M in Equation 3.1

with ρ(x′) d3x′, and sum (i.e. integrate) over x′ to get:

g(x) =
∫

all
space

Gρ(x′)(x′ − x)

|x− x′|3 d3x′.

You can define the gravitational potential scalar V (x) as

∇V (x) = g(x). (3.2)

V is the negative potential energy per unit mass. Note the word negative — that’s

the usual geophysical convention for V , and it means that there are sign differences

between the results here and many of the corresponding results you may have seen in

electrostatics. You can show, without much trouble, that

V (x) =
∫
Gρ(x′)

|x− x′| d
3x′. (3.3)

Note that because of Equation 3.2, you can add a spatial constant to Equation 3.3 without

affecting the physical significance of V (x).

Thus, given ρ(x′) everywhere, you can find V (x) and so you can infer g(x). So if you

are given an anomalous density distribution in the earth, you can estimate its effects on

gravity. As you might expect, problems like this arise often in geophysics.

3.2.1 V (x) for a uniform sphere

Let’s find V (x) for certain simple density distributions. First, consider a uniform sphere.

In this case ρ = constant = ρ0 for r′ < R (R = the radius of the sphere), where r′ is the
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radial spherical coordinate using the center of the sphere as the origin. So:

V (x) = Gρ0

∫ R

0
(r′)2 dr′

∫ π

0
sin θ′ dθ′

∫ 2π

0

dφ′

|x− x′| . (3.4)

We define our coordinate system so that x is on the ẑ axis, a distance d from the origin.

See Figure 3.1. Then,

x

θ ’d

r’

Figure 3.1:

|x− x′| =
[
d2 + (r′)2 − 2r′d cos θ′

]1/2

which is independent of φ′. So the dφ′ integral in Equation 3.4 gives 2π, and thus

V (x) = 2πGρ0

∫ R

0
(r′)2 dr′

∫ π

0

sin θ′dθ′

[d2 + r2 − 2r′d cos θ′]1/2
.

The dθ′ integral is relatively easy because sin θ′dθ′ = −d(cos θ′). That integral works out

to be 2/d. So:

V (x) =
4πGρ0

d

∫ R

0
(r′)2 dr′ =

4

3

R3πρ0G

d
=
MG

d
, (3.5)

where M is the total mass of the sphere. So, the gravitational field depends on how much

mass is in the sphere and on where the sphere is, but it is independent of the size of the

sphere. The field is the same whether the sphere has a large radius and a small density,

or has a small radius and a large density. In fact, the sphere could have a radius of zero

with an infinite density (i.e. a point mass). This illustrates a fundamental limitation for
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using observed gravity to learn about the earth’s interior: different density distributions

can give the same gravitational field. So, knowledge of the field can constrain the density,

but can not determine it uniquely.

The result in Equation 3.5 can be extended to any spherically symmetric density

distribution. If ρ(x′) = ρ(r′) where ρ(r′) is not necessarily constant, then the potential

at a distance d from the origin is

V (x) =
MG

d
(3.6)

where M is the total mass inside the sphere of radius d. Equation 3.6 is, in fact, the

lowest order approximation to the earth’s gravitational field, since the earth is close to

being spherically symmetric.

3.2.2 V (x) for a thin disc

A second useful example is the field due to a thin disc, where the field point is on the

axis of the disc. See Figure 3.2. In this case, using cylindrical coordinates:

V (x) = G
∫ R

0
r′ dr′

∫ 2π

0
dφ′

∫ h

0

ρ dz′

|x− x′|

where R and h are the disc radius and thickness.

z

h

x

R

Figure 3.2:

For a thin disc, 1/|x− x′| is approximately independent of z′. Let σ =
∫ h
0 ρdz

′, which

can be interpreted as an apparent surface mass density. Then

V (x) = Gσ
∫ R

0
r′ dr′

∫ 2π

0

dφ′

|x− x′|

= Gσ
∫ R

0
r′ dr′

∫ 2π

0

dφ′√
z2 + (r′)2
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= 2πGσ
[(
z2 +R2

)1/2 − z
]
. (3.7)

To find the gravitational potential due to an infinite plane sheet of mass, it seems

logical to use Equation 3.7 to find the limit of V as R → ∞. But that limit is ∞.

The problem is that V is determined only to within a spatial constant. And we need

to choose that constant more carefully before taking the limit. Specifically, we add a

constant, −2πGσR, to Equation 3.7 so that V (z = 0) = 0. Then, V becomes:

V (x) = 2πGσ
[
(z2 +R2)1/2 − (z +R)

]
. (3.8)

For an infinite plane, we take the limit of Equation 3.8 as R→∞, keeping leading terms

in z. For example, for z � R: (z2 + R2)1/2 ≈ R(1 + 1
2
z2

R2 ), so that

V ≈ lim
R→∞

2πGσ

[
R +

1

2

z2

R
− z −R

]
= −2πGσz.

So, for an infinite plane, g = ∇V = −2πGσẑ, which is independent of z. The explanation

for this is that for an infinite plane there is no scale length. You look down at the plane,

and no matter how far away you are, it looks the same to you.

3.2.3 V (x) for a line mass

Finally, let’s find the potential due to a thin line mass, where the field point is above the

midpoint of the line. See Figure 3.3. Then:

R

l’

d

x

Figure 3.3:
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V (x) =
∫ R/2

−R/2
dl′

∫
cross-

sectional
area

GρdA

|x− x′|

where dA is a differential element of the line’s cross-sectional area. For a line with negli-

gible cross-sectional area, 1/|x−x′| is essentially independent of the angular coordinates

that describe the area.

Define the mass/length as

λ =
∫

cross-
sectional

area

ρ dA.

Then

V (x) =
∫ R/2

−R/2

Gλdl′√
d2 + (l′)2

= 2Gλ ln

[
R +
√
R2 + 4d2

2d

]
. (3.9)

For an infinite line, let R → ∞. Then, V (x) from Equation 3.9 → ∞. Again, the

problem here is that we need to add a constant to Equation 3.9 before we take the limit.

We choose the constant to be −2Gλ lnR, so that Equation 3.9 becomes:

V = 2Gλ ln

[
R +
√
R2 + 4d2

2d

]
− 2Gλ lnR

= 2Gλ ln

[
R +
√
R2 + 4d2

2dR

]
.

Then, for an infinite line:

VR→∞ = 2Gλ ln
(

2R

2dR

)
= −2Gλ ln(d).

so that

g = ∇V = −2Gλ

d
.

3.2.4 A numerical method for arbitrary mass anomalies

Prospectors and, sometimes, geophysicists have a standard method for solving the for-

ward gravity problem (i.e. for finding g from an assumed density distribution, or from
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an hypothesized mass inclusion of arbitrary shape). They divide the underlying mass

into many thin discs. They then approximate the contribution of each disc to |g| in the

following way. See Figure 3.4. The contribution from the disc to the vertical component

z

θ

r
disc

P

Figure 3.4:

of g at P (only the vertical component will affect the amplitude of g to first order) is

∆g = −G
∫

disc

ρ sin θ

r2
dV

where ρ = disc density, and sin θ is included to give the vertical component of g. For a

thin enough disc, θ and r2 do not depend on the z coordinate of the point within the disc

(that is, the entire disc has about the same z coordinate). If
∫
ρ dz ≡ σ is the mass/area

of the disc, then:

∆g ≈ −Gσ
∫

disc

sin θ

r2
dA

where dA = element of surface area. Note that dA sin θ/r2 = solid angle subtended at

P by the infinitesimal area dA. ((dA sin θ) is the area, dA, projected onto a sphere of

radius r centered about P ; and that projected area is r2 dΩ, where dΩ is the infinitesimal

solid angle.) So:

∆g = −Gσ
∫

disc
dΩ = −GσΩ

where Ω = total solid angle subtended by the disc. The prospector computes Ω for each

disc, and then adds up all the discs. Discs are used because it’s easy to find Ω for them.

To include all the mass that is present in the anomaly, you’ve got to let the discs overlap

somehow. All this is done on a computer. The only thing you’ve got to worry about is:

are the discs thin enough? Programs that do this sort of thing are available commercially.

Incidentally, to see that this gives the right answer for an infinite plane, note that in

that case Ω = 2π (= half of the spherical result Ω = 4π). So ∆g = −Gσ2π, which is the
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infinite plane result we obtained earlier.

3.3 Poisson’s equation

3.3.1 Derivation

There is another way to write Newton’s Law of Gravity. You can represent it as a

differential equation (Poisson’s equation) instead of as an integral. Here, we will derive

the differential equation from the integral.

Consider the Laplacian operator, ∇2, defined as

∇2V (x) ≡ ∂x
2V + ∂y

2V + ∂z
2V.

From Newton’s integral for V , (Equation 3.3):

∇2V = G
∫
ρ(x′)∇2

(
1

|x− x′|

)
d3x′

where the Laplacian is with respect to x. But

∇2
x

1

|x− x′| = ∇2
x′

1

|x− x′|

where ∇2
x′ is with respect to x′. So:

∇2V = G
∫
ρ(x′)∇2

x′

(
1

|x− x′|

)
d3x′.

Divide the integration volume (all space) into D + ε, where ε = a sphere of radius R

centered about x, and D is the rest of space. We’ll let R → 0, later. For simplicity, we

temporarily define our coordinate system so that x = 0. Then (dropping the prime’s in

the integrand)

∇2V (x = 0) = G
∫

D
ρ(x)∇2

(
1

|x|

)
d3x +G

∫

ε
ρ(x)∇2

(
1

|x|

)
d3x. (3.10)

We will use spherical coordinates to do these integrals, so that

∇2 1

|x| = ∇2
(

1

r

)
.
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In spherical coordinates, and if r 6= 0, the Laplacian operator has the form:

∇2 =
1

r2
∂r(r

2∂r) +
1

r2 sin2 θ
∂θ (sin θ∂θ) +

1

r2 sin2 θ
∂2
φ. (3.11)

Thus,

∇2
(

1

r

)
=

1

r2
∂r(r

2∂r
1

r
) = 0

and so the integral over D in Equation 3.10 is 0. The integral over ε is not zero, because

Equation 3.11 is not valid at r = 0 (the center of ε).

To reduce the ε integral, note that

∇ ·
(
ρ∇1

r

)
= ∇ρ · ∇1

r
+ ρ∇2 1

r
.

So,

∇2V (0) = G
∫

ε
∇ ·

(
ρ∇1

r

)
d3x−G

∫

ε
∇ρ ·

(
∇1

r

)
d3x. (3.12)

Consider the second integral on the right hand side of Equation 3.12. Note that

∇
(

1

r

)
= −êr

1

r2

where êr is the unit vector in the r direction. And, d3x is proportional to r2. So, if

ρ is continuous at r=0 so that ∇ρ is bounded inside ε for ε small enough, then the

integrand is bounded. In that case, we know the integral must be less than the bound

of the integrand, multiplied by the volume of ε. So, if we take the limit as R → 0 (that

is we let ε → 0), this second integral vanishes. Note, though, that this argument does

not work if ρ is discontinuous at r=0. This means that Poisson’s equation may not be

valid at discontinuities. We will have to come back later and deal with this, by deriving

continuity equations on V across discontinuities.

To reduce the first integral on the right hand side of Equation 3.12, we use the

divergence theorem: ∫

ε
∇ · T =

∫

S
n̂ · T

where S is the surface bounding ε, and n̂ is the outward normal to S. In our integral ε

is a sphere, so that n̂ = r̂. Thus:

∇2V (0) = lim
R→0

[
G
∫

S
êr ·

(
ρ∇1

r

)
d2x

]
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= lim
R→0

[
G
∫

S
ρ∂r

(
1

r

)∣∣∣∣
r=R

R2 sin θ dθ dφ
]

= −G4π lim
R→0

[ρ(R)]

= −G4πρ(0).

If we now change back to our original coordinate system, so that the field point is at

x instead of at 0, we have the final form of Poisson’s equation:

∇2V (x) = −4πGρ(x).

We have shown that Newton’s Law of Gravity implies Poisson’s equation. You can

also go backwards and show that Poisson’s equation implies Newton’s Law of Gravity,

but we won’t do that here. That proof involves the use of Green’s functions (GM/|x−x′|
is the Green’s function for Poisson’s equation).

So, we have another way to find the gravity field: solve Poisson’s equation. If you

are given ρ(x) everywhere in space, it’s probably easiest to find V using Newton’s Law

of Gravity. But if you don’t know ρ everywhere, but you do have information about

V or about g over some bounding surface, then Poisson’s equation is apt to be more

useful. Differential equations are better suited for the use of boundary values. There is

no obvious place to put them into Newton’s Law of Gravity.

3.3.1.1 Gauss’ Law

Poisson’s equation has an integral form called Gauss’ Law. Consider any volume V with

surface S and normal n̂. Integrating Poisson’s equation over V, and using the divergence

theorem, gives:

∫

V
∇2V dV =

∫

S
n̂ · ∇V dS

=
∫

S
n̂ · gsS

= −4πG
∫

V
ρ dV
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where the last equality follows from Poisson’s equation. So, Gauss’ Law is

∫

S
n̂ · gdS = −4πG

∫

V
ρdV (3.13)

In words: the integral over a surface of the normal component of g is proportional to the

total mass inside the surface.

3.3.1.2 Continuity conditions

The derivation given above for Poisson’s equation is not valid at points where the density

is discontinuous. So, what do you do if you have discontinuities. For example, suppose

you have two regions, labeled as V1 and V2 in Figure 3.5, separated by the surface S.

2V

1V

n
0

n
0

n
0 n

0 n

S

pillbox

Figure 3.5:

And, suppose the density is discontinuous across S. In fact, let’s make it worse than

that. Let’s suppose there might even be a surface mass density, σ, on S. Surface mass

densities do not exist in the real world, but they are often used to approximate thin mass

layers to simplify the mathematics. You can think of a surface mass density this way: you

start with a mass anomaly distributed across a thin, but non-zero layer. You compress

the layer down to zero-thickness, keeping the total mass in the layer the same. You end

up with a layer of zero thickness but with non-zero mass, so that the volumetric density,

ρ, is infinite in the layer. σ is the density multiplied by the layer thickness (so it has

units of mass/area), and so it is a finite quantity. So, in our example, we are assuming

not only that ρ is discontinuous across S, but that it might even be infinite on S.

The surface S causes no particular difficulties if you are using Newton’s integral,

Equation 3.3, to find V . But, how do you incorporate S into Poisson’s equation?
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What you do is to solve Poisson’s equation in volumes V1 and V2 separately, and then

match the solutions across S using continuity conditions. Here we derive those continuity

conditions. There are two of them.

The first condition is that V1 = V2 on S, where V1 and V2 are the solutions just inside

V1 and V2, respectively. This can be seen directly from Newton’s integral (Equation 3.3),

noting that x in the integrand is continuous across S.

The second continuity condition is that

n̂ · ∇V2 − n̂ · ∇V1 = −4πGσ, (3.14)

where n̂ is the unit normal to S pointing from V1 into V2. Let’s derive Equation 3.14

using Gauss’ Law applied to the pillbox shown in Figure 3.5. The pillbox is infinitesimally

small.

Gauss’ Law says that

∫

pillbox
surface

n̂0 · ∇V dS = −4πG
∫

pillbox
volume

ρdV

where n̂0 is the outward normal to the pillbox. For a very small pillbox, ∇V on the right

hand surface of the pillbox is approximately equal to ∇V on the left hand surface. But

n̂0 has opposite signs on the two sides. Thus, the contributions to
∫

pillbox
surface

n̂0 · ∇V from

the vertical sides vanish. So, Gauss’ Law reduces to

∫

top
n̂0 · ∇V dS +

∫

bottom
n̂0 · ∇V dS = −4πG

∫

pillbox
volume

ρ dV.

Or, noting that n̂0 = n̂ in V2, and n̂0 = −n̂ in V1, then

∫

top
n̂ · ∇V2 dS −

∫

bottom
n̂ · ∇V1 dS = −4πG

∫

pillbox
volume

ρ dV.

If A is the area of S inside the pillbox, then A is also the area of the top and of the

bottom of the pillbox, and Gauss’ Law reduces to

A
[
n̂ · ∇V2 − n̂ · ∇V1

]
= −4πGσA.

Dividing by A gives the continuity condition, (Equation 3.14). By using this continuity

condition and the condition that V is continuous across S, you can use Poisson’s equation
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to uniquely determine the gravitational potential in the presence of a discontinuity and/or

a surface density.

It is possible to also show that the tangential derivative of V is continuous across any

discontinuity, even one with a surface mass. This additional continuity condition follows

directly from the continuity of V across S, and it provides no new information about the

solution. Nevertheless, I will derive it here.

Consider the two volumes V1 and V2, separated by the surface S, as shown below. S
is a surface of discontinuity in density, and S could even possess a surface density, σ.

V2 1 · · 2
V1 3 · · 4 S

Let the points 1 and 2 approach one another, and let 3 and 4 do the same. The

tangential derivative in V2 is then

lim
1→2

[
V (1)− V (2)

1− 2

]
, (3.15)

and that in V1 is

lim
3→4

[
V (3)− V (4)

3− 4

]
. (3.16)

But before we take the limits above, suppose we let the points 1 and 3 approach each

other, as well as the points 2 and 4. As 1 → 3 and 2 → 4, the denominators in

Equations 3.15 and 3.16 converge to the same value. And the numerators do too, because

V is continuous across S. So, the tangential derivatives are continuous.

3.3.2 Laplace’s equation

If you are in a region of space where there is no mass density, then Poisson’s equation

reduces to ∇2V (x) = 0, which is called Laplace’s equation. Not surprisingly, Laplace’s

equation is easier to solve than Poisson’s equation. It turns out that you never actually

need to solve Poisson’s equation. Instead, you can always get by with a combination of

Laplace’s equation and Newton’s Law of Gravity (Equation 3.3).

For example, the most general problem you might come up against is: given the

volume V with boundary values specified on the bounding surface S, and given some
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density distribution inside V, what is the potential inside V? In general, you might start

off by trying to solve Poisson’s equation. Instead, you can do the problem in two steps,

as follows.

First, you ignore the boundary, take ρ as given inside V and 0 outside V, and use

Newton’s Law to find V everywhere in space. Let this solution be V = V1. V1 will

probably not satisfy the boundary conditions on S. So, you write the actual solution

in V as V = V1 + V2, and try to find V2. Note that ∇2V = −4πGρ. And, you have

constructed V1 so that ∇2V1 = −4πGρ inside V. So, ∇2V2 = 0 inside V, which is

Laplace’s equation for V2. You solve this for V2 using the boundary conditions. Only, the

boundary conditions for V2 are different than for V . Suppose, for example, the boundary

conditions are: V = V0 (= some known function) on S. Then, the conditions on V2 are:

V2 = V0 − V1 on S.

For the remainder of this chapter, we will only consider Laplace’s equation. Suppose

the volume V is bounded by the surface S. Consider the following problem: ∇2V = 0,

with either V or ∂nV specified on S. A solution to this problem exists and is unique (to

within, possibly, a constant). I’ll just ask you to believe the statement that a solution

does exist. But, I will show the uniqueness of the solution. To do this, we need:

3.3.2.1 Green’s Theorems

These are useful in many geodetic and seismic applications. They are general relations

between functions, and do not require that the functions satisfy Laplace’s equation.

Start with the divergence theorem:

∫

V
(∇ · F ) dV =

∫

S
n̂ · F dS (3.17)

where n̂ is the outward normal to S. We choose F to have the form F = U∇T , where U

and T are scalars. Then:

∇ · F = ∇U · ∇T + U∇2T.

And:

n̂ · F = Un̂ · ∇T.
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So, Equation 3.17 is:

∫

V
∇U · ∇T +

∫

V
U∇2T =

∫

S
Un̂ · ∇T. (3.18)

This is Green’s first identity. Now, interchange U and T in Equation 3.18 and subtract

the results from (Equation 3.18). You get:

∫

V

[
T∇2U − U∇2T

]
=
∫

S

[
T n̂ · ∇U − Un̂ · ∇T

]

This is Green’s theorem.

We can use the first identity to prove the uniqueness of solutions to Laplace’s equation

in the case where either V or n̂ · ∇V is given on S. To do that, we show that if both V1

and V2 are solutions, then they can differ by at most a constant.

Suppose V1 and V2 satisfy Laplace’s equation and satisfy the same boundary condi-

tions: either V or n̂ ·∇V ≡ ∂nV specified on S. Construct V ≡ V1−V2. I will show that

V is constant everywhere in V, so that V1 = V2 + constant.

First, ∇2V = 0 (since ∇2V1 = ∇2V2 = 0), and either V = 0 or ∂nV = 0 on S. Then,

letting U = T = V in Equation 3.18 gives

∫

V
|∇V |2 +

∫

V
V∇2V︸ ︷︷ ︸

=0

=
∫

S
V ∂nV︸ ︷︷ ︸

=0

.

Or ∫

V
|∇V |2 = 0.

Since |∇V |2 ≥ 0 everywhere in V, then ∇V = 0 everywhere (otherwise
∫ |∇V |2 > 0).

So, V = constant in V. Note that if the boundary condition is that V is specified on S,

then the constant would have to be 0.

As a corollary, if V is a solution to Laplace’s equation and is constant on S, then V

is constant throughout V. This is because V = constant is a solution to the problem,

and we now know that the solution is unique.

Another property of harmonic functions is that if two harmonic functions, which are

defined in all of space, agree everywhere in some volume, then they agree everywhere.

The trick to proving this is to consider some closed surface, S, in that volume. The
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two functions agree on S and in the volume inside of S, by assumption. Since S is the

only boundary, they must also agree in the volume outside of S due to the uniqueness

theorem. So they agree everywhere.

Incidentally, ∞ is considered a boundary point for volumes that extend to infinity.

The usual boundary condition applied at ∞ is that V must go to 0 with increasing r

at least as fast as 1/r, except for a possible additive constant. This boundary condition

is necessary to ensure uniqueness for external volumes. It is not hard to show that this

boundary condition must hold if the mass distribution that causes V is finite. If the field

did not go to 0 this quickly, then the left hand side of Equation 3.13 (Gauss’ Law) would

go to∞ as the surface S goes to infinity. But, the right hand side of Equation 3.13 must

remain bounded for finite total mass. So this is impossible.

Another interesting property of solutions to Laplace’s equation is that those solutions

cannot have a local maximum or minimum within any volume V, except at a boundary

point of V. As a consequence, the gravitational potential can’t have either a minimum

or a maximum in free space.

A crude way to see this is: Suppose P is a point in V away from the boundary.

Suppose V is a solution to Laplace’s equation and has a local maximum at P. The P
is surrounded by points with smaller V . That is, you can enclose P with a surface, S,

where n̂ · ∇V < 0 everywhere on S, where n̂ points away from P. (n̂ · ∇V < 0 implies

that V is decreasing as you move away from P.) But, from Laplace’s equation and from

the divergence theorem

0 =
∫

V inside S
∇2V =

∫

S
n̂ · ∇V < 0,

since the last integrand is < 0. This is a contradiction. Thus, P can not be a local

maximum (similarly, it can’t be a local minimum).

3.3.3 Solutions to Laplace’s equation.

How do you solve ∇2V = 0, if you are given information about V or about ∂nV on the

boundary? A general method is to find a set of solutions which satisfy ∇2V = 0, but
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which (probably) do not satisfy the boundary conditions. You then add these solutions

together to satisfy the boundary conditions. The sum of solutions should still satisfy

∇2V = 0, because ∇2 is linear. The trick is to find a set of solutions which can easily be

summed to satisfy the boundary conditions. The solutions you choose will depend on the

shape of the boundary. You can only usefully apply this technique to simple boundary

shapes. For the earth, the useful boundaries are planes and spheres. For planes, the

appropriate solutions are usually trigonometric functions. For spheres, they are spherical

harmonics.

3.3.3.1 Planar boundaries

If you are interested in gravity variations that have wavelengths � earth’s radius, then

you can pretend the earth’s surface is a plane. In that case, you are often faced with the

following sort of problem:

V on the plane z = 0 is specified to be V (x, y, 0) = V0(x, y). V satisfies Laplace’s

equation in the half-space z > 0. Find V for all z > 0 (V must also be finite at z →∞).

The method, as described above, is to find a complete set of solutions to∇2V = 0. Try

solutions of the form V (x, y, z) = X(x)Y (y)Z(z). These are called separable solutions in

x, y, z. Using V (x, y, z) in ∇2V = 0 gives

(
∂2
xX

)
Y Z +

(
∂2
yY
)
XZ +

(
∂2
zZ
)
XY = 0.

Or, dividing by XY Z:
∂2
xX

X
+
∂2
yY

Y
+
∂2
zZ

Z
= 0.

∂2
xX/X is a function of x, ∂2

yY/Y of y, and ∂2
zZ/Z of z. The only way these three terms

can sum to 0 is if all three are constants. That is, if

∂2
xX = aX

∂2
yY = bY

∂2
zZ = cZ,

where a, b, and c are arbitrary constants and a + b + c = 0. But, we are not necessarily

trying to find all possible solutions to Laplace’s equations, or even all separable solutions.
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We are just trying to find enough solutions so that we can satisfy the boundary values.

It turns out that to do this we only need to consider solutions where a and b are negative

real numbers, and where c is a positive real number. So, we choose a = −k2
1, b = −k2

2,

and c = k2
3, where k1, k2, and k3 are, for the moment, arbitrary real numbers. Then, the

differential equations for X, Y , and Z have the form:

∂2
xX = −k2

1X

∂2
yY = −k2

2Y

∂2
zZ = k2

3Z

where k2
1 + k2

2 − k2
3 = 0. We will see later that these are all the solutions we need.

The solutions to these equations are

X = Beik1x

Y = Ceik2y

Z = Dek3z

where B, C, and D are arbitrary constants. (Alternatively, you could write the solutions

as cosines and sines, if you prefer those to complex exponential functions.) Note that

X = e−ik1x is another solution to the differential equation for X, but that it has not been

included in the list above. The reason is that X = e−ik1x is equivalent to X = eik1x, since

k1 can be either positive or negative. The situation is similar for Y and Z.

The total separable solution is then:

V (x, y, z) = Aeik1xeik2yek3z (3.19)

where A is an arbitrary complex constant, and where k2
3 = k2

1 + k2
2. To satisfy the

condition that V be finite at z = ∞, we require that k3 be negative. Because of this, a

slightly more convenient way to represent the separable solutions is to switch the sign on

k3, and to require that k3 be positive. So, our separable solutions have the form

V (x, y, z) = Aeik1xeik2ye−k3z (3.20)
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where k3 =
√
k2

1 + k2
2, and where k1 and k2 can be any real numbers.

A sum of these solutions for different k1 and k2 must also be a solution. Since k1 and

k2 can be any real numbers, then a sum over k1 and k2 becomes an integral. So,

V (x, y, z) =
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2A(k1, k2)eik1xeik2ye−k3z (3.21)

satisfies ∇2V = 0 for any complex function A(k1, k2) for which the integral exists. To

verify this, simply take the Laplacian of Equation 3.21, and note that the derivatives

move through the integral sign and act directly on the product of exponentials. (Note:

there is no integral over k3 in Equation 3.21, because k3 is a function of k1 and k2.)

We now have our general solution to Laplace’s equation. We need to see if it is general

enough. That is, by restricting ourselves to separable solutions and to the specific choices

for the separation constants a, b, and c used above, can we satisfy the boundary values?

The answer is: yes. Letting z = 0 in Equation 3.21 for V , and setting the result equal

to V0, gives:

V0(x, y) = V (x, y, z = 0) =
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 A(k1, k2)eik1xeik2y. (3.22)

For any non-pathological V0, we can always find a function A(k1, k2) that solves Equa-

tion 3.22. A is the two-dimensional Fourier transform of V0, and is given by:

A(k1, k2) =
1

(2π)2

∫ ∞

−∞
dx

∫ ∞

−∞
dy V0(x, y)e−ik1xe−ik2y. (3.23)

If A satisfies Equation 3.23, then V satisfies Equation 3.22. So, V is a solution. In

this way you can solve Laplace’s equation for any V0 on z = 0. (Again, if you don’t

like complex exponentials you can use sines and cosines instead.) You do the integrals

in Equation 3.23 to find A(k1, k2). And then you use the result in Equation 3.21, and

integrate to find V for z > 0. This method can be easily modified to solve problems

where ∂zV (z = 0) is given, rather than V (z = 0).

A common situation we’ll run into is one where V0 = V0(x) is independent of y. That

occurs when the surface values are dominated by long, linear features. In that case, the

results become a little simpler.
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One approach to this special case, is to note that if V0 is independent of y, then the

result in Equation 3.23 for A(k1, k2) gives a Dirac delta function for k2 when integrated

over y. That’s the right answer, but I don’t want to work with Dirac delta functions in

this course.

Instead, to find V (x, y, z) when V0 = V0(x), let’s go back to finding separable solutions,

under the assumption that V doesn’t depend on y either. In that case, the separable

solutions will have the form

V (x, z) = Aeik1xe−k3z

where k3 = |k1|, and where k1 can be any real number. We add these solutions together

to get the general solution:

V (x, z) =
∫ ∞

−∞
A(k1)eik1xe−|k1|z dk1. (3.24)

This V (x, z) satisfies Laplace’s equation. To find A(k1), V must satisfy

V0(x) = V (x, 0) =
∫ ∞

−∞
A(k1)eik1x dk1.

This can be inverted, for any V0 (provided V0 is integrable, etc.), to give

A(k1) =
1

2π

∫ ∞

−∞
dx V0(x)e−ik1x.

3.3.3.2 Cylindrical coordinates

Another way to solve plane boundary problems is to use cylindrical coordinates. These

are useful if the boundary values on the plane z = 0 are circularly symmetric about the

origin. The separable solutions in that case include Bessel functions, instead of eik1x or

eik2y. I won’t go into this. In this course, rectangular coordinates will work just fine for

all planar problems we consider.

3.3.3.3 Spherical boundaries

In global problems you’re interested in finding V outside the earth, given information

about V on what is approximately a spherical surface. In this case, a spherical coordinate
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system (r, θ, φ) is appropriate. In spherical coordinates:

∇2V =
1

r2
∂r(r

2∂rV ) +
1

r2 sin θ
∂θ(sin θ ∂θV ) +

1

r2 sin2 θ
∂2
φV.

We first try to find a complete set of solutions to ∇2V = 0 in spherical coordinates,

without trying to satisfy the boundary conditions. Let’s look for separable solutions of

the form:

V (r, θ, φ) = T (θ)L(φ)R(r).

Then, T , L and R must satisfy (using V (r, θ, φ) in ∇2V = 0, and dividing by V ):

[
1

R
∂r
(
r2∂rR

)]
= −

[
1

T sin θ
∂θ(sin θ ∂θT ) +

1

L sin2 θ
∂2
φL
]
.

The 1/ sin2 θ in the ∂2
φL term prevents a complete separation of these terms into r, θ,

and φ at this stage, but at least r is separated from θ and φ. That is, the left hand side

depends only on r, while the right hand side depends only on θ and φ. This equation

can be satisfied only if the two sides are equal to a constant. Let’s write the constant as

l(l+ 1). (l will turn out to be an integer, but so far we don’t know that. At the moment,

l could be any complex number.) Then:

∂r(r
2∂rR) = Rl(l + 1) (3.25)

1

T sin θ
∂θ (sin θ ∂θT ) +

1

L sin2 θ
∂2
φL = −l(l + 1). (3.26)

Equation 3.25 is:

∂2
rR +

2

r
∂rR−

R

r2
l(l + 1) = 0.

There are two solutions:

R =





rl

r−(l+1).

To find T and L, we multiply Equation 3.26 by sin2 θ to give:

1

T
sin θ ∂θ (sin θ ∂θT ) + l(l + 1) sin2 θ = − 1

L
∂2
φL.

The left hand side depends only on θ, and the right hand side depends only on φ. So

both sides equal a constant. Call the constant m2. (m will turn out to be an integer, but
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we don’t know that yet, either.) So:

∂2
φL = −m2L (3.27)

sin θ ∂θ (sin θ ∂θT ) = (m2 − l(l + 1) sin2 θ)T. (3.28)

The solutions to Equation 3.27 are

L =





eimφ

e−imφ.

Continuity of L requires that L(φ = 2π) must equal L(φ = 0), and this will occur only

if m is an integer. So the solution for L is

L = eimφ

where m can be any integer: positive, negative, or 0.

The hard part is now to solve Equation 3.28 for T . Define x ≡ cos θ. Then,

dT

dθ
=
dx

dθ

dT

dx
= − sin θ

dT

dx
,

and

sin θ =
√

1− x2.

Using these results in Equation 3.28, gives a differential equation for T in terms of x:

∂x
[(

1− x2
)
∂xT

]
+

(
l (l + 1)− m2

1− x2

)
T = 0. (3.29)

This equation can be solved by expanding T using a power series in x:

T =
(
1− x2

)m/2 ∞∑

n=0

anx
n.

We are interested in solutions for T which are finite on [−1, 1], which is why we include

no negative exponents in the sum over n. To find the an’s, we use this power series in

Equation 3.29 to find recursion relations for the an’s. We find that the series diverges at

x = ±1 unless l is a non-negative integer, and unless l ≥ |m|. In fact, what we find is

that in that case, the power series truncates to a finite-order polynomial in x: powers of
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xn with n > l− |m| have coefficients an = 0. From this point on we require that l and m

be integers, and that l ≥ |m|.
When m = 0, these polynomial solutions are written as T (x) = Pl(x), and are called

“Legendre polynomials.” These polynomials reduce to the form

Pl(x) =
1

2l
1

l!

dl

dxl
(x2 − 1)l.

Note that Equation 3.29 determines T only to within a multiplicative constant: the

function Pl could be multiplied by any additional constant, and it would still be a solution.

The leading factor of
(

1
2l

1
l!

)
in the definition of Pl is simply the conventional normalization

factor.

For m 6= 0, the solutions are written as T (x) = Pm
l (x), and are called “associated

Legendre functions.” They have the form

Pm
l (x) = (−1)m(1− x2)m/2

dm

dxm
Pl(x) (3.30)

for m ≥ 0. What about for m < 0? Note that the differential equation for T has an m2

dependence. So, solutions for negative m should be the same as for positive m. It is not

usual to define Pm
l for m < 0. But, you could if you wanted — by changing all the m’s

on the right hand side of Equation 3.30 into |m|’s. Note, also, that P 0
l = Pl.

The condition that |m| ≤ l, which is required in order for T to be finite on [−1, 1],

is automatically guaranteed by the expressions for Pm
l and Pl. The highest power of x

in Pl(x) is xl. That’s because (x2 − 1)l has highest power x2l, and after you have taken

l derivatives, you are left with xl. Then, to find Pm
l you take |m| more derivatives. If

|m| > l, that will give 0.

So, we’ve found separable solutions. They are of the form:

V =





rl

or

r−(l+1)





× Pm
l (cos θ)eimφ

(using x = cos θ as the argument of Pm
l ). It is common to lump the θ and φ dependence
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together into a single set of functions called spherical harmonics, and defined as:

Y m
l (θ, φ) =

√√√√2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ (3.31)

form ≥ 0. For negative m, the spherical harmonics are defined using Y m
l ≡ (−1)mY

(−m)∗
l ,

where Y m∗
l indicates complex conjugation. With the use of these functions, the separable

solutions to ∇2V = 0 have the form:

V =





rl

r−(l+1)




× Y m

l (θ, φ) (3.32)

where l (≥ 0) and m (|m| ≤ l) are integers.

The leading square root factor in the definition of Y m
l is used so that we have the

convenient normalization:
∫ 2π

0
dφ

∫ π

0
sin θ dθ [Y m

l (θ, φ)Y m∗
l (θ, φ)] = 1

Note that it doesn’t matter how the Y m
l ’s are normalized, in the sense that if the Y m

l ’s are

multiplied by any additional constant, Equation 3.32 will still satisfy Laplace’s equation.

Sometimes in geophysics other normalizations are used — so be careful.

3.3.4 Properties of the Y m
l ’s and Pm

l ’s

I’ll give, without proof, some of the more useful properties. There are lots of good

references for these.

3.3.4.1 Parity

Pm
l (cos(π − θ)) = Pm

l (− cos θ) = (−1)l+mPm
l (cos θ)

eim(φ+π) = (−1)meimφ.

So:

Y m
l (π − θ, φ+ π) = (−1)lY m

l (θ, φ).

This tells you what happens to Y m
l due to an inversion of the coordinate system through

the origin.
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3.3.4.2 Recursion Relations

(2l + 1)xPm
l (x) = (l + 1−m)Pm

l+1(x) + (l +m)Pm
l−1(x)

(1− x2)∂xP
m
l = −lxPm

l + (l +m)Pm
l−1.

There are lots of other recursion relations, but these two are probably the most useful.

3.3.4.3 Specific Results

I’ll only give two, both of which will be useful later in the course.

Y 0
0 =

1√
4π

Y 0
2 =

√
5

16π
(3 cos2 θ − 1).

3.3.4.4 Orthogonality

∫ 2π

0
dφ

∫ π

0
sin θ dθ Y m

l (θ, φ)Y m′∗
l′ (θ, φ) = δll′ δmm′

where δ is the Kronecker delta (i.e. δll′ = 1 if l = l′, and = 0 otherwise).

3.3.4.5 Completeness

If V0(θ, φ) is any sufficiently smooth, complex function over the unit sphere (that is, on

0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π), with V0(φ = 0) = V0(φ = 2π), then you can always find

complex numbers Am
l such that

V0(θ, φ) =
∞∑

l=0

l∑

m=−l
Aml Y

m
l (θ, φ). (3.33)

To find the Aml , multiply Equation 3.33 by Y m′∗
l′ and integrate over the sphere. Using

the orthogonality property gives:

Aml =
∫ 2π

0
dφ
∫ π

0
sin θ dθ V0(θ, φ)Y m∗

l (θ, φ).
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3.3.4.6 The wavelengths of the Y m
l ’s

The values of l and m tell you something about the spatial wavelengths of the Y m
l . Since

P 0
l = Pl is a polynomial of degree l in cos θ, then Pm

l is (1− x2)
m/2

= sinm(θ) times a

polynomial of degree (l − m). (The “l − m” is from the ∂mx Pl in Equation 3.30.) So,

Pm
l (x) has l −m zeros between the North and South Poles, plus additional zeros at the

poles (for m 6= 0) due to the sinm(θ) factor.

The φ dependence of Y m
l is eimφ. So, the real and imaginary parts of Y m

l each have

2m zeros for φ ∈ [0, 2π).

Since a function has two zeros per wavelength, then the north–south wavelength over

the earth’s surface is roughly

π 6371
1
2
(l −m)

km ≈ 40000

l −m km

(where 6371 km = earth’s radius). And the east–west wavelength at the equator is

2π 6371

m
km ≈ 40000

m
km.

Another way to think of this is that Y m
l has a wavelength, independent of direction, that

is roughly 40,000/l; and that the value of m tells you about the orientation of the spatial

pattern. For example, for m = 0 the wavelengths are 40,000
m

km and are oriented north–

south, while for m = l they are oriented east–west. (Actually, there are north–south

variations even when l = m, because of the sinm(θ) factor.)

3.3.4.7 The Addition Theorem

Let x(= (r, θ, φ)) and x′(= (r′, θ′, φ′)) be two vectors separated by the angle γ. Then

Pl(cos γ) =
4π

2l + 1

l∑

m=−l
Y m∗
l (φ′, φ′)Y m

l (θ, φ)

(where cos γ = cos(θ) cos(θ′) + sin(θ) sin(θ′) cos(φ − φ′)). This is the addition theorem,

which has been given here without proof.

Here’s one way to interpret the addition theorem. Consider θ′ and φ′ as fixed, so that

the Y m∗
l (θ′, φ′) are just numbers. Then, the theorem tells us how to use those numbers
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to construct a linear combination of the Y m
l (θ, φ) which, for all θ, φ, reduces to an m = 0

spherical harmonic. Think of the Y m∗
l (θ′, φ′)’s as rotation coefficients, due to rotating the

coordinate system from a coordinate system where the z-axis points towards x′, to a new

system where the z-axis is along êz. This rotation changes the φ-independent Pl(cos γ) to

a sum of φ-dependent Y m
l . But note that it doesn’t change the value of l. This theorem

further supports the suggestion above, that l characterizes the shape of a Y m
l while m

describes its orientation.

3.3.5 Applications

The most common application is something like the following. We are given V on a

spherical surface (r = R) about the origin: V (r = R, θ, φ) = V0(θ, φ). We assume that

V (r =∞) = 0. Find the solution to ∇2V = 0 outside the sphere (r > R).

To do this, we add together the separable solutions. Keep the r−(l+1) term in Equa-

tion 3.32, but discard the rl term since rl →∞ as r →∞. So, try:

V (r, θ, φ) =
∞∑

l=0

l∑

m=−l
Aml r

−(l+1)Y m
l (θ, φ). (3.34)

To find the complex coefficients Am
l , use r = R in Equation 3.34, and set the result

equal to V0. Then, from the completeness property of the Y m
l ’s,

Aml = Rl+1
∫

sin θ dθ dφ V0(θ, φ)Y m∗
l (θ, φ).

(If the problem were, instead, to find V inside r = R, then we’d keep the rl term in

Equation 3.32 instead of the r−(l+1) term.)

This approach can be changed slightly to solve problems where you are given ∂rV ,

instead of V , on r = R.

3.3.5.1 Example 1.

Suppose V0 = constant on the sphere r = R. Then,

Aml = Rl+1V0

∫
sin θ Y m∗

l dθ dφ (3.35)
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Note that 1 =
√

4π Y 0
0 . So Equation 3.35 can be written as:

Aml = Rl+1V0

√
4π
∫

sin θ (Y 0
0 Y

m∗
l ) dθ dφ

= Rl+1V0

√
4π δl0 δm0.

where the last equality follows from the orthogonality of the Y m
l ’s. So: A0

0 = RV0

√
4π,

and all other Aml = 0. Putting these results for Am
l back into V (r, θ, φ) gives:

V (r, θ, φ) =
A0

0

r
Y 0

0 =
RV0

√
4π

r

1√
4π

=
RV0

r

which is the result we obtained earlier for a sphere using direct integration.

3.3.5.2 Example 2.

For the real earth, V is not quite constant over the surface, and the earth’s surface is

not quite a sphere. A better approximation for V on r = R, than that described by

Example 1, is:

V (r = R, θ, φ) = V0 [1− J2P2(cos θ)]

where J2 and V0 are constants. (Note that we are still assuming that the surface is a

sphere.) What is V in this case for r > R? (We’ll see, later, why the biggest perturbation

to V0 is a P2 term. It has to do with the earth’s rotation.) From the results above, we

conclude that

Aml = V0R
l+1

∫
sin θ dθ dφY m∗

l [1− J2P2(cos θ)] .

To write the integrand as products of Y m
l ’s, we use:

1 =
√

4πY 0
0 P2 = P 0

2 =

√
4π

5
Y 0

2 .

So:

Aml = V0R
l+1

∫
sin θ dθ dφ

√
4π

[
Y m∗
l Y 0

0 − J2Y
m∗
l Y 0

2

1√
5

]

= V0

√
4πRl+1

[
δl0 δm0 −

J2√
5
δl2 δm0

]



96 CHAPTER 3. POTENTIAL THEORY

where the last equality follows from the orthogonality of the Y m
l ’s. So:

A0
0 = V0R

√
4π

A0
2 = −V0R

3J2

√
4π

5

which gives

V (r, θ, φ) =
V0R
√

4π

r
Y 0

0 −
V0R

3J2

√
4π
5

r3
Y 0

2

=
V0R

r
− V0R

3J2

r3
P2(cos θ)

= V0

[(
R

r

)
− J2

(
R

r

)3

P2(cos θ)

]
.

3.3.5.3 Radial dependence as a function of l

One general comment: Note that if you’re outside the earth, an individual Y m
l term in V

will decrease with increasing radius as r−(l+1) (see Equation 3.32). So, components with

larger l decrease more rapidly. Since large l corresponds to short horizontal wavelengths,

this implies that the shorter wavelength signals die away more rapidly as you proceed

away from the earth. This is why a satellite must be in a relatively low orbit if it is to

be useful for determining short wavelength terms in the earth’s gravity field.

3.3.6 The use of Y m
l ’s in direct integration

Spherical harmonics can also be useful in direct integrations problems: where you are

trying to find V for a given density distribution inside the earth. Note that this is an

application which doesn’t involve solving a boundary value problem.

Suppose you know ρ(x′). You can always expand ρ into spherical harmonics, to

obtain:

ρ(x′) =
∑

l′,m′
ρm
′

l′ (r′)Y m′
l′ (θ′, φ′). (3.36)

You can do this, because, as stated above, the spherical harmonics are a complete set of

functions on every sphere r′ = constant. In fact,

ρm
′

l′ (r′) =
∫ 2π

0
dφ
∫ π

0
sin θ dθ ρ(r′, θ, φ)Y m′∗

l′ (θ, φ). (3.37)
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It is not obvious, but it turns out that you can also expand 1/|x− x′| into spherical

harmonics as:

1

|x− x′| = 4π
∞∑

l=0

l∑

m=−l

1

2l + 1

rl
<

rl+1
>

Y m∗
l (θ′, φ′)Y m

l (θ, φ)

where

r< = r′

r> = r





if r′ < r

r< = r

r> = r′





if r′ > r.

3.3.6.1 Finding V outside a surface

These expansions of ρ(x′) and of 1/ |x− x′|, can be used in Equation 3.3 to find V outside

the earth. In that case r > r′ for all r′ inside the earth, and so Equation 3.3 becomes

V (x) = G
∫

ρ(x′)

|x− x′|d
3x′

= 4πG
∑

l,m

∑

l′,m′

[
1

2l + 1
×

∫
(r′)l

rl+1
ρm
′

l′ (r′)Y m′
l′ (θ′, φ′)Y m∗

l (θ′, φ′)Y m
l (θ, φ)(r′)2 dr′ sin θ′ dθ′ dφ′

]
.

The integral over dθ′dφ′ is easy, due to the orthogonality of the Y m
l ’s. We get 0 from the

integral unless l = l′ and m = m′. So, the sum over l′, m′ goes away, and we can replace

ρm
′

l′ with ρml , to obtain:

V (x) = 4πG
∑

l,m

Y m
l (θ, φ)

2l + 1

1

rl+1

[∫
(r′)l+2ρml (r′) dr′

]
. (3.38)

So, to find V , you find the ρml (r′) using Equation 3.37, and then you integrate over r′

and sum over l and m in Equation 3.38.

We will use this result later in these notes. We will also occasionally want to compute

V when there is a surface density, σ, concentrated on the spherical surface r = R. In

that case, the radial integral in Equation 3.38, reduces to Rl+2σml , and so:

V = 4πGR
∑

l,m

σml
2l + 1

Y m
l (θ, φ)

(
R

r

)l+1

. (3.39)
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Note: suppose you know V , and you want to learn about ρ(r). The best you can do is to

use Equation 3.38. This equation doesn’t give you ρ as a function of r; but at least it does

give you a weighted average of ρml (r) for each l and m. Note that the weighting factor,

rl+2, is largest near the surface, especially for large l (short horizontal wavelengths).

As an application of Equation 3.38, suppose we have a spherically symmetric earth,

so that ρ(x′) = ρ(r′). Then, from Equation 3.37,

ρm
′

l′ (r′) =
∫ 2π

0
dφ
∫ π

0
sin θ dθ ρ(r′)Y m′∗

l′ (θ, φ)

=
∫ 2π

0
dφ
∫ π

0
sin θ dθ ρ(r′)

√
4πY 0

0 Y
m′∗
l′ (θ, φ)

=





√
4πρ(r′) if l′ = m′ = 0

0 otherwise

So ρ0
0(r′) =

√
4πρ(r′), and all other ρm

′
l′ (r′) = 0. Using this result in Equation 3.38, gives:

V (x) = 4πG
Y 0

0 (θ, φ)

r

∫
(r′)2ρ0

0(r′) dr′ =
GM

r

where M is the total mass of the earth, given by

M =
∫
ρ(x′) (r′)2 sin θ′ dr′ dθ′ dφ′ = 4π

∫
(r′)2ρ(r′) dr′ =

√
4π
∫

(r′)2ρ0
0(r′) dr′.

This result for V agrees with the result that we obtained in Section 3.2.1 without using

spherical harmonics.

3.3.6.2 Finding V inside a surface

Here’s another result we’ll need later. Consider a point, x, inside a hollow object which

has a mass density of

ρ(r′, θ′, φ′) =
∑

l,m

ρml (r′)Y m
l (θ′, φ′).

What is V at x?

The answer is obtained as in the case where you are outside the sphere, except that

here r< = r and r> = r′. (Assume r < r′, for all r′ in the massive object.) The result is:

V (x) = 4πG
∑

l,m

Y m
l (θ, φ)

2l + 1
rl
∫ ρml (r′)

(r′)l−1
dr′.
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As a special case, suppose the hollow object is a sphere, and that all of the mass is

described with a surface mass density, σ, on the spherical surface r = R. Then

V (x) = r4πG
∑

l,m

Y m
l (θ, φ)

2l + 1

(
r

R

)l−1

σml , (3.40)

where

σ =
∑

l,m

σml Y
m
l (θ, φ).

Note that if x is inside an object that is not hollow, so that there is some mass inside

of x and some outside, then V would be obtained by adding together the solutions for

external and internal mass distributions described above.

3.3.6.3 A slightly non-spherical surface

Finally, here is another example that will prove useful later. Suppose we model the

earth as having a homogeneous mass density (ρ = ρ0 = constant), and an outer surface

that is almost, but not quite, spherical. Suppose the outer surface consists of the points

(r′, θ′, φ′) that satisfy:

r′ = r0


1 +

∑

l′,m′
εm
′

l′ Y
m′
l′ (θ′, φ′)




where

εm
′

l′ � 1

and where r0 (= constant) is the mean spherical radius of the surface. What is V inside

and outside this earth?

We could do this exactly by integrating over dr′, dθ′, dφ′ as described above, after

expanding ρ(x′) in terms of Y m
l . But there is an easier way to obtain an approximate

result, that uses the assumption that εm
′

l′ � 1.

If all of the εm
′

l′ ’s were zero, our earth would be a sphere and the solution would be

easy (described in several places above). Because the εm
′

l′ ’s are small, you can think of

their effects on V as, to lowest order, the effects of a surface mass. You think of this

earth as the sum of a sphere of radius r0, and a thin shell at r = r0, with thickness
∑
l′,m′ ε

m′
l′ Y

m′
l′ (θ′, φ′).
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This thickness can be negative for some (θ′, φ′), but that’s OK. It just means that at

those (θ′, φ′) we must remove mass from the r0 sphere to obtain the shape of the object.

(See Figure 3.6.)

positive thickness

sphere
negative thickness

0

ρ
0

r

"earth"

Figure 3.6:

We can easily find V due to the sphere. The difficult part is to find V due to the thin

shell. To lowest order, we assume that the mass distribution of the shell can be described

with a surface density at r = r0, given by

σ(θ′, φ′) = r0ρ0

∑

l′,m′
εm
′

l′ Y
m′
l′ (θ′, φ′).

The expansion of σ into spherical harmonics is:

σ(θ′, φ′) =
∑

l′,m′
σm
′

l′ Y
m′
l′ (θ′, φ′)

where

σm
′

l′ = r0ρ0ε
m′
l′ . (3.41)

Outside. Suppose x is outside our earth, so that r ≥ r′, for all r′ in the earth. Then, V

due to the r = r0 sphere is
GM

r
=

4

3
πr3

0ρ0
G

r
.
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And we can use Equation 3.39 to find the effects of the surface mass at a point

outside the sphere. Using Equation 3.41 for σml in Equation 3.39, and adding the

spherical component, gives a total V of

V (x) =
4

3
π
r3

0ρ0G

r
+ 4πGr2

0ρ0

∑

l,m

(
εml

2l + 1

)
Y m
l (θ, φ)

(
r0

r

)l+1

.

Inside. Suppose r < r′, for all r′ on the surface of the object.

The potential at r due to the sphere (r = r0) is

V =
2

3
πρ0G

(
3r2

0 − r2
)
.

I haven’t derived this in these notes, but it’s easy to do that on your own. The

3r2
0 term is a constant, added to V so that V is continuous at r = r0. To find the

effects of the thin shell, we use the Equation 3.41 for σml in the result for V from

Equation 3.40. The solution for the total contribution to V is:

V =
2

3
πρ0G(3r2

0 − r2) + 4πGρ0r
2
∑

l,m

εml
2l + 1

Y m
l (θ, φ)

(
r

r0

)l−2

.
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Chapter 4

Physical Geodesy Problems

4.1 The Figure of the Earth: The Geoid

The geoid is the surface of constant potential energy that coincides with mean sea level

over the oceans. (“Potential energy,” here, refers to the gravitational plus centrifugal

potential energy.) This is the standard definition of the geoid, but it’s a sloppy defini-

tion. For one thing, mean sea level is not quite a surface of constant potential, due to

dynamic processes within the ocean. You can imagine, though, turning off the dynamic

processes so that sea level does become a constant potential surface. (We’ll show later

that the surface of an equilibrium fluid is a constant potential surface.) For another

thing, wherever there are continents, the geoid lies beneath the earth’s surface. As a

result, the actual equal potential surface under continents is warped by the gravitational

attraction of the overlying mass. But geodesists define the geoid as though that mass

were underneath the geoid instead of above it. In other words, their geoid is not truly

an equipotential surface. We’ll worry about a more precise definition, later.

Probably the main function of the geoid in physical geodesy is to serve as a reference

surface for leveling. To see the connection, suppose the earth’s surface was covered with

a layer of water. The geoid would then coincide with the surface of that water layer. If

you leveled over this surface, your results would show that the entire surface was at the

same elevation: the fluid level in the instrument would always indicate “horizontal” as

103
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being parallel to the water surface.

So what you really measure when you level, are the elevations above (or below) the

geoid. Thus, to find the actual shape of the earth you need to determine the shape of

the geoid. And, for that, you need gravity observations.

Let’s consider the shape of the geoid and its relation to measured gravity for some

simple, but progressively more complicated, earth models.

4.1.1 Spherically Symmetric, Non-rotating Earth

In this case, the surface of the earth is r = a, the potential outside the earth is V = GM/r

where M = earth’s mass, and gravity at the earth’s surface is g = GM/a2. The potential

V , is constant for constant r. If, for example, we want the geoid to have a mean radius

equal to the radius of the earth, then we choose that constant value of r to equal “a,”

so that r = a is the geoid. So, in this case, the geoid is the outer surface. Note that

g = constant on the geoid. This will not be true, in general, for a more realistic earth.

4.1.2 Spherically Symmetric, Rotating Earth

If you take a spherical earth and start it rotating, it will not remain spherical. Centrifugal

forces deform the earth into an ellipse. The ellipticity has as big an effect on the geoid as

does the rotation. But, let’s look at the two effects separately. In this section we assume

the earth is rotating but that it remains spherical.

In this case the outer surface is r = a. The gravitational potential outside is V =

GM/r. The gravitational acceleration outside is GM/r2, and is directed radially inwards.

The geoid is a surface of constant gravitational plus centrifugal potential. The cen-

trifugal force per unit mass is

−Ω× (Ω× r) = −Ω Ω · r + rΩ2 (4.1)

= ∇
(

1

2

[
r2Ω2 −

(
Ω · r

)2
])

︸ ︷︷ ︸
centrifugal potential

(4.2)
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where Ω = the earth’s rotation vector. So, the sum of the gravitational and centrifugal

potentials is

VT =
GM

r
+

1

2

[
r2Ω2 −

(
Ω · r

)2
]
.

If we define the coordinate system so that Ω is along êz, then

Ω · r = Ωz = Ωr cos θ.

So:

V =
GM

r
+

1

2
Ω2r2 sin2 θ.

Using Legendre polynomials:

sin2 θ =
2

3
− 2

3

[
1

2

(
3 cos2 θ − 1

)]

︸ ︷︷ ︸
P2

=
2

3
− 2

3
P2(cos θ).

So

VT =
(
GM

r
+

1

3
Ω2r2

)
− 1

3
Ω2r2P2(cos θ). (4.3)

So rotation modifies the θ-independent term in VT , and introduces a P2 term. (We

are using P2, here, instead of Y 0
2 simply to follow convention.)

The rotational terms are small. For example:

1

3
Ω2r2

GM/r
≈ 1

870
(at earth’s surface).

P2(cos θ) varies from 1 to − 1
2

over the surface, so the P2 term is approximately (1 −
(−1

2
))
(

1
870

)
= 1

580
of the gravitational term.

Rotation also affects the observed acceleration. A gravimeter records the sum of the

gravitational acceleration and the centrifugal acceleration. That sum is best found by

taking the gradient of VT :

gT = ∇VT (4.4)

= êr∂rVT +
1

r
êθ∂θVT

= êr

[
−GM

r2
+

2

3
Ω2r − 2

3
Ω2rP2(cos θ)

]
+ êθ

[
−1

3
Ω2r∂θP2(cos θ)

]
. (4.5)
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So, Ω modifies the radial component of gT , and introduces a θ-component.

Note that neither the amplitude nor the direction of gT is constant over the surface

r = a.

What is the shape of the geoid for this example? In other words, VT in Equation 4.3

is a function of r and θ: VT = VT (r, θ). Find r as a function of θ (r = r(θ)), so that

VT (r(θ), θ) is independent of θ. The surface described by r(θ) is then a surface of constant

VT , and so is a candidate for the geoid.

To find r(θ), we assume that r(θ) ≈ a, so that the effects of rotation on the geoid are

small. This is probably a pretty good approximation, since the effects of rotation on VT

are less than 1/500. We write r(θ) ≈ a + δr(θ), where δr/a � 1, and we try to find a

first-order approximation for δr.

VT in Equation 4.3 has a GM/r term and two r2Ω2 terms. The r2Ω2 terms are first

order already, so we can use the approximation r = a in r2Ω2. The GM/r term is zero

order, so we use r = a + δr in that term, along with the approximation (a+ δr)−1 ≈
1
a
[1− δr

a
]. Then:

VT (r = a+ δr, θ) ≈ GM

a

[
1− δr(θ)

a

]
+

1

3
Ω2a2 − 1

3
Ω2a2P2(cos θ). (4.6)

For Equation 4.6 to be independent of θ, δr(θ) must satisfy:
(
GM

a2

)
δr(θ) = −1

3
Ω2a2P2(cos θ) + constant.

where the constant can be any number, so long as it is independent of θ. Or, since

GM/a2 ∼= gT at r = a (gT ≡ |gT |) to zero order in Ω2, then:

δr(θ) = −1

3

Ω2a2

gT
P2(cos θ) + constant.

The constant in these expressions does nothing interesting. It is not uniquely deter-

mined by the requirement that VT = constant on this surface. It just tells you which

of the VT=constant surfaces you are on. If you want the geoid to be the VT=constant

surface that has its mean radius = a, then the constant in the above equations is zero

(the average of P2(cos θ) is 0), and the geoid is described by:

r = a− 1

3

Ω2a2

gT
P2(cos θ). (4.7)
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Equation 4.7, then, would be the shape of the mean sea surface. The second term on

the right-hand-side of Equation 4.7 varies with θ (as θ varies between 0 and 2π) by

approximately (1/580)× a ≈ 11 km. So, sea level has large departures from a spherical

surface. Note that if you leveled over the earth’s surface, assumed here to be r = a, you

would conclude that there were 11 km differences in elevation over that surface.

Incidentally, suppose we write the geoid in the form: r = a + δr(θ, φ), where δr

is the departure of the geoid from a sphere. Write VT at (r, θ, φ) (Equation 4.3) as

VT = V 0
T + δV (r, θ, φ) where V 0

T is independent of both θ and φ (V 0
T = GM

r
+ 1

3
Ω2r2)

and δV ( = −1
3
Ω2r2P2(cos θ) in this example) represents the angular dependence of VT .

Then, note that:

δr ≡ δV (r = a)

gT
.

This result will also hold in all later examples, as we increase the complexity of the model

earth.

Finally, suppose we could measure |gT | on the geoid. How would the result vary

with position on the earth’s surface (i.e. with θ)? That is, construct the vector field

gg = gT (r = a + δr, θ, φ) to represent g on the geoid. What is gg (≡ |gg|) as a function

of θ?

gg = |ggr êr + ggθ êθ|

≈ |ggr | (to 1st order in small quantities)

≈ |gT (r = a) + δr∂rgT (r = a)|.

Then from Equation 4.5 above, ignoring terms in ∂rgT of the order of Ω2, since those

terms are second order after being multiplied by δr, we obtain:

gg ≈

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− GM

a2︸ ︷︷ ︸
dominant

term

+
2

3
Ω2a−2

3
Ω2aP2(cos θ)−

︸ ︷︷ ︸
∂rδV




1

3

Ω2a2

(
GM

a2
)


P2(cos θ)

︸ ︷︷ ︸
δr=δV/gT

2GM

a3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
GM

a2
− 2

3
Ω2a+

4

3
Ω2aP2(cos θ)
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=
GM

a2
− 2

3
Ω2a+ δg, (4.8)

where all the angular dependence in this final result is included in:

δg ≡ 4

3
Ω2aP2(cos θ) = −∂rδV (r = a)− 2δV (r = a)

a
(4.9)

This result, Equation 4.9, relating the angular dependent component of gg to the angular

dependent component of VT , is another result that will hold for the more complicated

earth models described below.

Given that (δg = −2δV
a
− ∂rδV ) and (δr = δV/gT ) will hold for an arbitrarily com-

plicated earth model (we have yet to demonstrate that), we can anticipate now how

geodesists determine the earth’s shape.

First, they level the earth. This tells them how the earth’s surface differs from the

geoid. To determine the geoid, they measure gravity over the surface. They then use

those results to deduce gravity on the geoid. They do that using the leveling data. Those

data give them the radial distance between the surface and the geoid. Call that distance

H. Note that H/a � 1. If gs = g as measured on the surface, then gg ( = the value of

g on the geoid) is approximately:

gg ≈ gs −H∂rgs
≈ (ignoring terms that are 2nd order in the departure from spherical symmetry)

gs −H∂r
(
GM

r2

)

r=a

≈ gs

[
1 +

2

a
H
]
.

So, now they have g on the geoid. They then find δg (the angular-dependent component

of gg), and solve ∂rδV + 2
a
δV = −δg to find δV . (We’ll talk about how you solve for δV

later.) And δr = δV/g gives the geoid shape.

4.1.3 Rotating, Elliptically Symmetric Earth

The earth is not a sphere. The biggest contribution to VT from the non-spherical density

components is the addition of a P2(cos θ) term to the P2(cos θ) term that is already
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present due to the rotation. This new P2 term is caused by a P2 deformation of each

constant density surface inside the earth which, in turn, is caused by the centrifugal force

associated with the earth’s rotation. We’ll model this P2 deformation, later. Meanwhile,

just take my word that the P2 contribution to VT is by far the largest non-spherical

contribution.

Let J2 be a dimensionless parameter which describes the size of the P2 contribution

to VT . Define J2 so that outside the earth:

VT =
GM

r
+

1

3
Ω2r2 − 1

3
Ω2r2P2(cos θ)− MG

r3
a2J2P2(cos θ)

︸ ︷︷ ︸
new term

. (4.10)

The radial dependence of a spherical harmonic of order l is r−(l+1), which is why the

term proportional to P2, above, has a radial dependence of r−3 (P2 is proportional to

Y 0
2 ). The amplitude of the total acceleration (gravitational + centrifugal) outside the

earth is then:

gT ≡ |gT |

≡ |∇VT |

≈ |∂rVT | (to 1st order in small quantities)

=

∣∣∣∣−
GM

r2
+

2

3
Ω2r − 2

3
Ω2rP2 +

3MG

r4
a2J2P2

∣∣∣∣

=
GM

r2
− 2

3
Ω2r +

[
2

3
Ω2r − 3MG

r4
a2J2

]
P2.

To find the shape of the geoid, we write the geoid as r = a+ δr(θ, φ), and try to find

the function δr for which VT (r = a+δr, θ, φ) is independent of θ and φ. As we saw above,

the Ω2r terms are small at r = a. And it turns out that J2 � 1, as well. (After all, the

P2 density perturbation is due to the Ω2r terms in the potential — as we will see later

— and those terms are small.) So we can assume δr/a � 1. Then, putting r = a + δr

into Equation 4.10, and keeping terms 1st order in small quantities, gives the following

approximation for VT on the geoid:

VT on geoid =
GM

a

[
1− δr

a

]
+

1

3
Ω2a2 − 1

3
Ω2a2P2 −

MG

a
J2P2.
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This expression is independent of θ (it is obviously independent of φ), if:

−GM
a2

δr −
[

1

3
Ω2a2 +

MG

a
J2

]
P2 = constant.

Or, if:

δr ∼= −
[

1

3

Ω2a2

gT
+ aJ2

]
P2 + constant. (4.11)

with gT ≈ GM/a2. As in Section 4.1.2, the constant determines which constant poten-

tial surface we are on. If we want ‘a’ to equal the mean radius, then the constant in

Equation 4.11 must equal 0. As in Section 4.1.2, note that

δr ∼= δV (a)

gT
(4.12)

where δV is the angular-dependent part of VT :

δV (r) = −
[

1

3
Ω2r2 +

MGa2

r3
J2

]
P2. (4.13)

Also, we can estimate gT on the geoid, as:

gg ≡ gT (r = a + δr, θ, φ)

≈ gT (a, θ, φ) + δr∂rgT (4.14)

≈ GM

a2
− 2

3
Ω2a+

[
2

3
Ω2a− 3GM

a2
J2

]
P2 − 2

GM

a3
δr.

where the last equality follows using Equation 4.11 for gT , and keeping only the lowest

order term (in gT ) where it multiplies the first-order quantity: δr. If δg is the angular-

dependent part of gg, then using the result for δr gives:

δg ∼=
[
2

3
Ω2a− 3gTJ2

]
P2

︸ ︷︷ ︸
−∂rδV

+2
gT
a

[
1

3

Ω2a2

gT
+ aJ2

]
P2

︸ ︷︷ ︸
−δr=−δV/gT

=
[
4

3
Ω2a− gTJ2

]
P2

= −
[
∂rδV +

2

a
δV
]

r=a
. (4.15)

Equation 4.15 was also valid in Section 4.1.2.

So, to find the shape of the geoid, you solve Equation 4.15 for δV , given observations

of δg (actually, as described in Section 4.1.2 above, you obtain δg by extending surface
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gravity data to the geoid using observed leveling elevations). Then, you use δV in

Equation 4.12 to get δr. Note that once you have δV , you can determine J2 from

Equation 4.13. And, a value for J2 is potentially interesting since it tells you something

about the earth’s density distribution.

The notation J2 comes from satellite geodesy. Other subdisciplines use different

parameters to describe the P2 distribution.

For example, the “flattening” is defined as

f =
3

2
J2 +

aΩ2

2gT
.

The significance of f is that for the simple elliptical earth model discussed here, the geoid

height is

δr = −af 2

3
P2 = af

[
1

3
− cos2 θ

]
.

So, the difference in geoid height between the equator and the poles is

af
[(

1

3
− cos2 90◦

)
−
(

1

3
− cos2 0◦

)]
= af.

Another parameter, sometimes written as B2, is defined as

B2 =
5

2

aΩ2

gT
− f.

The significance of B2 is that the gravitational acceleration observed on the geoid is (for

our simple elliptical model)

gg ∼= GM

a2
− 2

3
Ω2a+ gT

2

3
B2P2(cos θ).

So, the difference between equatorial and polar gravity on the geoid is

gTB2.

4.1.4 The ellipsoid

The real earth is, of course, more complicated than a simple ellipse. There are contribu-

tions to VT from all the Y m
l , not just from P2. But, the P2 term is by far the largest.
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It is convenient (and usual) to remove the P2 term from all observations. We will then

define “gravity anomalies” and “geoid anomalies” as the differences from the constant

plus P2 terms.

The P2 term is well determined from satellite observations. The accepted values for

J2, B2, and f are:

J2 = 1.0826× 10−3

f =
1

298.26

B2 = 5.28× 10−3.

(4.16)

These numbers (look, particularly at f) predict a difference in the geoid radius between

the poles and the equator of about 21 km. This is much bigger than typical elevation

differences associated with surface topography, and is about twice as large as the contri-

bution from rotation alone.

The mathematical surface described by r = a+δr, where δr is a P2(cos θ) term chosen

to be consistent with the numerical values listed in Equation 4.16 (in other words, the

geoid for the simplified earth in Section 4.1.3) is called the ellipsoid. The ellipsoid is a

pretty good approximation to the geoid for the real earth — better than a sphere, for

example. Later, when we talk about geoid heights for the real earth, we will mean the

difference between the geoid and the ellipsoid.

4.2 Clairaut’s Differential Equation

Before we go ahead and consider a more realistic earth, with more Y m
l contributions to

VT , let’s see if we can’t understand the P2 term a little better. Why does rotation cause

such a term, and why are the results for J2, B2, and f equal to the numbers shown above?

What do those numerical values tell us about the earth?

It turns out that the numerical results are consistent with the assumption that the

earth responds to the centrifugal force of rotation as though it were a fluid. To understand

this result, let’s suppose we have a spherically symmetric fluid sphere (density = constant

on spherical surfaces). We spin the fluid about the êz axis with an angular velocity of
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rotation = Ω. After the fluid has come to equilibrium, what does the internal density

distribution look like? We will assume that the centrifugal force is � the gravitational

force, so that surfaces of constant density are almost spheres — as they were before spin

up.

In other words, we assume that a surface of constant density which was r = r0 before

spin up, is now

r = r0

[
1− 2

3

∞∑

l=0

εl(r0)Pl(cos θ)

]

where εl(r0) � 1. Why just include Y 0
l , instead of Y m

l (Pl is proportional to Y 0
l )?

Because the centrifugal force, which causes the aspherical shape, is symmetric about the

êz axis, so that we expect surfaces of constant density to be independent of φ. The use

of Pl instead of Y 0
l , and the inclusion of the factor −2/3, are consistent with convention.

Note that with this convention, ε2(a) = f (the flattening defined above). Our objective

here is to find the εl(r0) for all l and r0.

Let VT (x) = total potential (gravitational plus centrifugal). I claim that for a fluid

at equilibrium, surfaces of constant density are also surfaces of constant VT (x). To see

this, note that at equilibrium there is no motion, and that the only forces are those due

to pressure, gravity, and the centrifugal force. If P = pressure, then the equilibrium

condition is

∇P = ρ∇VT

where ρ = density. Take ∇× each side of this equation. Then, since the curl of a gradient

is zero:

0 = ∇×
(
ρ∇VT

)
⇒

0 = ∇ρ×∇VT .

So, the normals to constant ρ and constant VT surfaces are everywhere parallel (∇ρ is

along the normal to the constant ρ surface, for example). So, the two surfaces coincide.

It is possible to derive integral/differential equations for the εl. We will do that here,

but only for ε2. You can show from the integral/differential equations for arbitrary l,
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that εl = 0 for l 6= 2. We’ll skip that here, but physically it is because the centrifugal

potential includes only l = 2 aspherical terms.

So, we assume the constant density/VT surfaces have a shape described by:

r = r0

[
1− 2

3
ε(r0)P2(cos θ)

]

where ε� 1. We need to find an equation for ε(r0).

To do this, we need to find VT at an arbitrary point (r, θ, φ) inside the earth. The cen-

trifugal potential is 1
3
Ω2r2− 1

3
Ω2r2P2(cos θ), as we saw in Equation 4.2. The gravitational

potential is harder.

To find the gravitational potential, note that we can describe the density of the de-

formed earth by using a radially-dependent function: ρ(r0). The real density is dependent

on θ, as well, and it can be determined from ρ(r0). Here’s how we do that. We choose a

point (r, θ, φ) in the earth. This point is on the constant density surface described by r0,

where r0 satisfies:

r = r0

[
1− 2

3
ε(r0)P2(cos θ)

]
.

(To first order in ε, r0ε(r0) = rε(r). So r0 is given, to first order, by r0
∼= r[1 +

2
3
ε(r)P2(cos θ)].) Define ρ(r0) as the density on the surface described by the parame-

ter r0. So the density at (r, θ, φ) is ρ(r0 = r[1 + 2
3
ε(r)P2(cos θ)]), to first order in ε.

Now, break the earth up into thin, constant-density shells. Suppose the lower bound-

ary of a shell is the surface described by r0. The upper boundary is the surface described

by r0 + dr0 where dr0 is infinitesimal. So, the upper boundary of the shell is

r = (r0 + dr0)
[
1− 2

3
ε(r0 + dr0)P2(cos θ)

]
.

The lower boundary is

r = r0

[
1− 2

3
ε(r0)P2

]
.

Let’s find V due to the shell, both above the shell (i.e. outside the shell’s outer surface)

and below the shell (i.e. inside the shell’s inner surface). First, we consider a point outside

the outer surface. That is, we find V at (r, θ, φ), where r is larger than any r in the shell.

To do this, we write down the expression for V caused by a uniform object that has
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density ρ0 = ρ(r0), and an outer surface equal to the (r0 +dr0) surface (the outer surface

of the shell); and we subtract from it the expression for V caused by a uniform object

with ρ0 = ρ(r0) and an outer surface equal to the r0 surface (the inner surface of the

shell).

From Chapter 3 we know that for small ε the potential due to a homogeneous object

with outer surface r = r0[1 + εY m
l ] (where ε� 1) is

V (r, θ, φ)︸ ︷︷ ︸
outside the object

=
4

3
π

(r0)3ρ0G

r
+ 4πG(r0)2ρ0

ε

2l + 1

(
r0

r

)l+1

Y m
l (θ, φ).

In our case, l = 2 and m = 0. And we can replace Y 0
2 with −2

3
P2, since that’s just a

matter of re-defining ε in these Chapter 3 results.

So, for the r0 + dr0 surface:

Vr0+dr0 =
4

3
π

(r0 + dr0)3ρ0G

r

+4πG(r0 + dr0)2ρ0

(
−2

3
ε(r0 + dr0)

)
1

5

(
r0 + dr0

r

)3

P2

≈ (to first order in dr0)

4

3
π
ρ0G

r
r3

0

[
1 + 3

dr0

r0

]

− 8

15
πG

P2(cos θ)

r3
r5

0

[
ε(r0) + dr0

(
5
ε(r0)

r0

+ ∂r0ε(r0)

)]
ρ0.

For the r0 surface:

Vr0 =
4

3
π
r3

0ρ0G

r
− 8

15
πGρ0r

5
0

ε(r0)

r3
P2(cos θ).

So, the contribution to V from the shell alone is the difference of these V ’s.

Vshell︸ ︷︷ ︸
outside

= Vr0+dr0 − Vr0

= dr0 4πρ0G

[
r2

0

r
− 2

15

r4
0

r3
[5ε(r0) + r0∂r0ε(r0)]P2(cos θ)

]

where ρ0 ≡ ρ(r0).

Now, let’s find Vshell inside the inner surface of the shell. From the results of Chapter 3,

if you are inside a homogeneous body with density ρ0 and outer surface r = r0[1 + εY m
l ],
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then

V︸︷︷︸
inside

= 2πρ0G

(
r2

0 −
r2

3

)
+ 4πGρ0r

l ε

2l + 1
r

(2−l)
0 Y m

l .

In our case l = 2, m = 0, and we again replace Y m
l with −2

3
P2. The effect on V from an

object with surface described by r0 + dr0 is

Vr0+dr0 = 2πρ0G

(
(r0 + dr0)2 − r2

3

)
− 8πGρ0

15
r2ε(r0 + dr0)

≈ (to 1st order in dr0)

2πρ0G

[
r2

0 + 2r0dr0 −
r2

3

]
− 8πGρ0

15
r2 [ε(r0) + dr0∂r0ε]P2.

The contribution from a homogeneous object with an r0 surface is

Vr0 = 2πρ0G

(
r2

0 −
r2

3

)
− 8πGρ0

15
r2P2.

So, the contribution from the shell is the difference:

Vdr0︸︷︷︸
inside

= Vr0+dr0 − Vr0

=
[
4πρ0Gr0 −

8πGρ0

15
r2∂r0ε(r0)P2(cos θ)

]
dr0.

Incidentally, you might wonder: why not estimate the effects of the shell by finding

the mass in a radial column of the shell (that mass would equal the density times the

thickness) and then pretend the mass is a surface density at r = r0. After all, that’s

what we did to find the potential from a homogeneous object with a slightly non-spherical

surface. But, that doesn’t work here. That will give an answer correct to 1st order in

the shell thickness. So, for the homogeneous body that means correct to order ε. But

our shell differs from a spherical surface mass by terms of order dr0 and ε. If we were to

pretend it was a spherical surface mass we would be throwing away (dr0)2 and ε2 terms

— which is ok — but also the (dr0ε) terms — which are important. So, that method

doesn’t work.

So, we now have V from a shell. To find VT (r, θ, φ) from the entire object, we sum over

shells. That means we integrate Vdr0 over r0. We use the outer solution for 0 ≤ r0 ≤ r.
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And the inner solution for r ≤ r0 ≤ a, where a = earth’s radius. And, we include the

centrifugal potential. The result is:

VT (r, θ, φ) =
∫ r

0
4πGρ(r0)

[
r2

0

r
− 2

15

r4
0

r3
[5ε(r0) + r0∂r0ε(r0)]P2(cos θ)

]
dr0

+
∫ a

r
4πρ(r0)G

[
r0 −

2

15
r2∂r0ε(r0)P2(cos θ)

]
dr0 (4.17)

+
1

3
Ω2r2 − 1

3
Ω2r2P2(cos θ)

Incidentally, there’s another thing you might worry about. Our result for V inside a

shell was really only valid at points (r, θ, φ), where r was less than every r in the shell.

And, our result for V outside was only good when r was larger than every r in the shell.

So, the integrals in Equation 4.17 should really have the limits
∫ r−∆r1
0 and

∫ a
r+∆r2

where

∆r1 and ∆r2 are of order ε. And then there should be a 3rd integral between r − ∆r1

and r + ∆r2, where the integrand is some more complicated expression for Vdr0 which is

valid when r is “in” the shell. In fact, you can see that something is amiss by looking at

the shell potentials Vdr0 inside and outside the shell. The two are not continuous when

r = r0, but V should be continuous. What happens is that Vdr0 should be modified

slightly at r, within ε or so of r0.

But, this all gives a 2nd order (in ε) effect on VT (r). Comparing Vdr0 inside and

outside at r = r0, shows that the discontinuity is of order ε. So the true Vdr0 near r = r0

differs from the Vdr0 used here, by terms of order ε. And, the size of the region you

integrate over is order ε. So, the result is a 2nd order effect in ε, and thus the result

above for VT is ok to 1st order in ε.

We still must find an equation for ε. By assumption, a constant density surface is

described by

r = r1

[
1− 2

3
ε(r1)P2(cos θ)

]
.

(Use r1 instead of r0 to distinguish between the field (r1) point and the mass (r0) point.)

For this to also be a constant potential surface, VT (r = r1

[
1− 2

3
εP2

]
, θ, φ) must be

independent of θ and φ. To 1st order in ε,

VT

(
r = r1

[
1− 2

3
εP2

]
, θ, φ

)
= VT (r1, θ, φ)− 2

3
r1ε(r1)P2∂rVT (r1, θ, φ). (4.18)
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If we only require Equation 4.18 to be accurate to first order in ε, then we can approximate

∂rVT by setting ε = 0 in VT before differentiating (since ∂rVT is already multiplied by ε

in Equation 4.18). We get (ignoring the Ω2 terms in ∂rVT as well, since those terms are

the same size as the terms that are first-order in ε):

∂rVT ∼= 4πG∂r

[∫ r

0
ρ(r0)

r2
0

r
dr0 +

∫ a

r
ρ(r0)r0 dr0

]
(4.19)

= 4πG

[
ρ(r)

r2

r
−
∫ r

0
ρ(r0)

r2
0

r2
dr0 − ρ(r)r

]
(4.20)

= −4πG

r2

∫ r

0
ρ(r0)r2

0 dr0. (4.21)

So VT on this constant-density surface, from Equation 4.18, and using Equations 4.17

and 4.21, is:

VS ≡ VT

(
r = r1

[
1− 2

3
εP2

]
, θ, φ

)

= 4πG
∫ r1

0
ρ(r0)

[
r2

0

r1
− 2

15

r4
0

r3
1

[5ε(r0) + r0∂r0ε(r0)]P2(cos θ)

]
dr0

+ 4πG
∫ a

r1
ρ(r0)

[
r0 −

2

15
r2

1∂r0ε(r0)P2(cos θ)
]
dr0

+
1

3
Ω2r2

1 −
1

3
Ω2r2

1P2(cos θ)

+
2

3
r1ε(r1)P2

4πG

r2
1

∫ r1

0
ρ(r0)r2

0 dr0.

We want VS to be independent of θ. So, we set the sum of the P2(cos θ) coefficients equal

to zero, which results in the condition:

4πG
∫ r1

0
ρ(r0)

(
− 2

15

)
r4

0

r3
1

[5ε(r0) + r0∂r0ε(r0)] dr0

+ 4πG
∫ a

r1
ρ(r0)

(
− 2

15

)
r2

1∂r0ε(r0) dr0

− 1

3
Ω2r2

1 +
8

3

ε(r1)πG

r1

∫ r1

0
ρ(r0)r2

0 dr0 = 0.
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A slight re-organization gives:

−8

5
πG

[
1

r3
1

∫ r1

0
ρ(r0)r4

0 [5ε(r0) + r0∂r0ε(r0)] dr0

+ r2
1

∫ a

r1
ρ(r0)∂r0ε(r0) dr0

− 5
ε(r1)

r1

∫ r1

0
ρ(r0)r2

0 dr0

]
= Ω2r2

1. (4.22)

Equation 4.22 is an integral equation for ε. We can transform it into a differential equation

by:

1. multiplying by r3
1 and taking ∂r1 of the result; and then

2. multiplying by r−4
1 and taking ∂r1 again.

The result is Clairaut’s differential equation for ε(r), which, after changing r1 to r, has

the form:

ρ(r)
(
∂2
r ε(r)−

6

r2
ε(r)

)
+

6ρ(r)

r

(
∂rε(r) +

ε(r)

r

)
= 0 (4.23)

where

ρ(r) =
3

r3

∫ r

0
ρ(r0)r2

0 dr0.

Note that all Ω2 terms are missing in Equation 4.23. That means that Clairaut’s

equation doesn’t have enough information to uniquely determine ε(r). Instead, to find

ε you find a general solution to Clairaut’s equation. (There will be two independent

solutions since the equation is 2nd order.) Then you find the coefficients in the general

solution, by requiring that the result satisfies the integral equation for ε, Equation 4.22

above.

4.2.1 Example: A uniform (homogeneous) earth

Assume ρ = ρ0 = constant. Then:

ρ(r) =
3

r3
ρ0

∫ r

0
r2

0 dr0 = ρ0.
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In this case, Clairaut’s equation reduces to:

∂2
r ε +

6

r
∂rε = 0.

We try a solution of the form ε = rn, and find that

n(n− 1) + 6n = 0.

Or

n(n + 5) = 0 ⇒ n =





0

−5.

So, the general solution is:

ε = b +
c

r5
.

Now, we find b and c. We note right away that c = 0. Otherwise, ε → ∞ near the

earth’s center. This would mean that the radii of constant density/potential surfaces →
∞ near the center, which we know cannot be true.

So c = 0, and the general solution is: ε = b = constant. To find b in terms of Ω2, we

put ε = b into the integral equation Equation 4.22. Then ∂r0ε = 0, and Equation 4.22

reduces to:

− 8

15
πG

[
1

r3
1

5bρ0

∫ r1

0
r4

0 dr0 − 5
b

r1
ρ0

∫ r1

0
r2

0 dr0

]
=

1

3
Ω2r2

1

or:

− 8

15
πG

[
5bρ0

r3
1

r5
1

5
− 5

b

r1
ρ0
r3

1

3

]
=

1

3
Ω2r2

1

or:

b =
15

16

(
Ω2

πρ0G

)
. (4.24)

So, ellipticity = constant = Equation 4.24.

The real density inside the earth is not constant, but increases with depth. It turns

out that then Clairaut’s equation implies that ε increases with radius. So the outer

portions of our fluid earth are more aspherical than the inner portions.

ε also always turns out to be positive, which implies that the surfaces are squashed

down at the poles. To see this, note that (remembering that P2 = 1
2

(3 cos2 θ − 1)):

r(θ = 90◦)− r(θ = 0◦) = −2

3
εr0 [P2(90◦)− P2(0◦)]



4.2. CLAIRAUT’S DIFFERENTIAL EQUATION 121

= −2

3
εr0

[
−1

2
− 1

]

= εr0.

So, ε > 0⇒ r(90◦) > r(0◦).

If you use the best seismic results for the density function ρ(r0) and solve Clairaut’s

equation, you find:

ε(a) = f(= flattening ) =
1

299.7
.

The observed f , using satellite data for J2, is

fobs =
1

298.257
.

The difference is 1/2% (i.e. a relative accuracy of 5× 10−3).

This agreement is good, but the observational errors for J2 are better than 10−6. So,

why is there this discrepancy?

One possibility is that the 1st order theory is not good enough, so that you should

go to 2nd order. People have constructed a 2nd order theory, but the 2nd order terms

affect the solution at only the 5× 10−4 level (.05%), which is not large enough.

Another possibility is that the seismic density model is not quite right. You can

modify the density slightly so that it is still reasonably consistent with seismic data and

predicts the correct f . But, you still have trouble. That’s because of the following:

We’ll see, later, that the earth precesses due to the gravitational attraction of the

sun and moon, in the same way a top nutates due to the gravitational attraction of the

earth. The period of the precession is well known from observations — it is roughly

26,000 years. The period depends on the “dynamical ellipticity” of the earth:

H =
C − A
C

where C and A are principal moments of inertia of the earth. We’ll see all this, later.

It turns out (you can get this by appropriate integration of the internal density)

that H is proportional to the coefficient of the P2(cos θ) term in the density, integrated

through the earth. In other words, H is proportional to the radial integral (through the
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entire earth) of ε(r). f (or J2), on the other hand, is proportional to ε(r) at the outer

surface r = a.

To first order in ε you can relate H to f from Clairaut’s equation. It turns out that:

H =
f − 1

2
m

1− 2

5

√
5

2

m

f
− 1

where m = Ω2a/gT .

So, once f is known — H follows directly. And, note that the relation between H

and f is independent of the density.

Well, the observed H and f don’t satisfy this relation (m is known). So, no matter

what the density is, you can’t satisfy the observations of H and f from Clairaut’s equa-

tion. Using the best seismic density results in Clairaut’s equation gives a predicted H

of 1/308.0. The observed H is 1/304.437. The discrepancy is approximately 1%. If you

adjust the density so that f is right, then H is still wrong by 0.5%. If you adjust the

density so H is right, then f is wrong by approximately 0.7%. Or, you can adjust the

density so that both are right to approximately 0.4%.

The only conclusion possible is that the earth is not exactly in hydrostatic equilibrium

with the centrifugal potential. Note that a 0.5% error in f is approximately 0.005×21 km

≈ 100 m error in the pole-equator elevation difference in the ellipsoid, and that’s about

the same order as the geoid anomalies for other Y m
l terms. (Actually, this term is still

somewhat larger than the other Y m
l terms.)

So, what can cause the ellipticity to be different from the expected value? One unlikely

explanation is that the earth has some finite strength. That is, it can support some shear

stress over long time periods, and so is not a perfect fluid. Most geophysicists don’t

believe that. It is true that the earth’s crust and lithosphere can support shear stresses

for long times. After all, there is topography on the surface, and if the crust behaved as

a fluid that topography would presumably ‘flow’ laterally until it had disappeared. But,

in order to have a significant non-fluid response to the centrifugal force, there’d have to

be finite strength over a much thicker region than the thin crust/lithosphere. And, most
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geophysicists are reluctant to believe that.

A related possibility is that the mantle is a very viscous fluid. That is, the viscosity

is large and so it takes a reasonably long time for the mantle fluid to reach equilibrium.

The relevance of this is that the earth’s rotation is decreasing approximately linearly

with time (we’ll get into this later). And so the centrifugal force is decreasing. If the

viscosity is high enough that the mantle response time is longer than the time it takes for

the centrifugal force to decrease significantly, then the present shape of the earth might

be reflecting the older, faster rotation. This would lead to ellipticities larger than those

predicted from Clairaut’s equation. Most geophysicists don’t believe this explanation,

either. There are estimates of the mantle viscosity from postglacial rebound (we’ll talk

about that, later), and they suggest the viscosity is not large enough.

The most likely explanation is that the earth is approximately fluid over long time

periods, but that there are other factors besides rotation that cause lateral variations in

density. That is certainly the case: thermal anomalies must exist within the earth if there

is to be on-going mantle convection. Those thermal anomalies must be associated with

density anomalies (it is buoyancy forces caused by the density anomalies that directly

drive the convection). So, presumably the discrepancy from Clairaut’s equation is due

to the Y 0
2 component of those thermal/density anomalies. The non-Y 0

2 part of the geoid

is also presumably due to this effect.

4.3 A More Realistic Earth

In Section 4.1, we described the geoid for an elliptical earth. Here, we extend that

description to include non-elliptical contributions.

First, let’s discuss the definition of the geoid a little more. The definition we have

used so far is: the surface of constant potential which coincides with mean sea level over

the oceans. If you cut thin canals across the continents joining the oceans, the water in

the canals would be on that constant potential surface.

But, this is not really the geoid. The real geoid is a surface which is defined in some
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sense by the leveling process: it is the reference surface for leveling. For example, you

level and find that Boulder, Colorado is approximately 5000 ft above some reference

surface — that surface is the geoid.

Suppose you make leveling measurements everywhere over the earth’s surface. Over

the oceans, the leveling results would indicate no change in elevation (except for the

effects on sea level from dynamical oceanographic processes — like currents). So, over

the oceans the geoid does coincide with a constant potential surface. What about under

land?

There certainly is a constant potential surface under the land connecting the ocean

surfaces. But, it is not exactly coincident with the geoid (although it’s pretty close).

The horizontal surface that the leveling instrument uses as a reference is, indeed, an

equipotential surface. But it is the equipotential surface that runs through the position

of the instrument, which at Boulder is about 5000 ft above the reference surface you are

trying to define. And the equipotential surface down at that depth is not necessarily

parallel to the one that runs through Boulder.

For example, consider the possible situation pictured in Figure 4.1. The leveling

at instrument

topography

instrument

equipotential surface coinciding

through levelling instrument

equipotential surface

equipotential surface passing 

with sea level

A
B

Figure 4.1:
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instrument would show that the two endpoints, A and B, of line AB, were at the same

elevation because they lie on the same equipotential surface. So, we would want to define

the geoid so that A and B were the same distance above it. But in this example, the

two endpoints are not equal distances above the lower equipotential surface, because the

equipotential surfaces above and below the topographic feature are not parallel to one

another.

Incidentally, there is another type of problem that sometimes comes up when trying

to use leveling observations to determine elevations. It turns out that for particularly un-

favorable geometries, the apparent elevation difference between two locations can depend

on the leveling route you use. For example, consider the mountain shown in Figure 4.2,

where there is more mass on one side than the other. You want to level from A to B.

large mass

A B

equipotential

surfaces

Figure 4.2:

One leveling route you can take is around the mountain: out of the page and around to

B, where the equipotential surfaces are presumably all flat and parallel to the surface.

Using this route, you would conclude that A and B were at the same elevation. Another

route you could take would be over the mountain. As you go up the left hand side, the

equipotential surfaces are tipped so that they are more parallel to the mountain surface

than are the equipotential surfaces on the right hand side. So, leveling would not register

as much elevation gain going up the left hand side as the measured elevation loss going

down the right hand side. You would then conclude that B was lower than A.
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These sorts of errors are usually negligible. They are only important when you’ve got

large elevation changes along the leveling route. Geodesists have developed methods to

reduce them (usually involving gravity measurements) although you can’t eliminate them

entirely. What this problem shows, though, is that the idea of a well-defined surface (the

geoid) acting as a reference surface for leveling is not really valid. With the geoid, we

are simply trying to find a surface which comes as close to a useful reference surface as

possible.

So, how do we find such a surface? We want to try to relate it to gravity somehow,

so that we can determine it from gravity observations. Over the ocean the geoid will

be an equipotential surface. Under continents, we want the geoid to be parallel to the

equipotential surface at the leveling instrument overhead. External equipotential surfaces

are approximately parallel to one another, so long as they are not separated by too great

a distance. But, an equipotential surface inside the earth is apt to be distinctly tilted

with respect to an external equipotential surface.

For example, consider the topography in Figure 4.3. The land mass warps the internal

land

ocean ocean

equipotential surface

equipotential surface

geoid

Figure 4.3:

and external equipotential surfaces in different directions. The geoid should be defined

so that it is parallel to the external surface. Thus the geoid in this example will not
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coincide with an equipotential surface.

So, what do we do? We use the fact that external equipotential surfaces are reasonably

parallel. For example, a concise way to define a reference surface for leveling would be to

choose the equipotential surface that lies just above Mt. Everest. That surface, since it

is everywhere external to the earth, is nearly parallel to the local equipotential surfaces.

And, it is a physically meaningful surface (i.e. it is an equipotential surface). But, it

obviously does not coincide with sea level over the oceans. In fact, if we used this as a

reference surface, we would end up assigning all elevations to be negative, determined by

the number of feet below Mt. Everest.

In a sense, this is what people do. Only they (sort of) add the height of Mt. Everest to

every such elevation. More precisely, they expand the potential just outside Mt. Everest

as a sum of spherical harmonics. They then continue this expansion down to mean

sea level by assuming that the radial dependence of each Y m
l term is r−(l+1), which is

the radial dependence for an external field. This results in a sort of quasi-potential at

sea level. They then define the geoid as the surface over which this quasi-potential is

constant. Note that this does not give the true potential down at sea level, because the

actual radial dependence is much more complicated when you continue down through

continental mass. Instead, it is nearly equivalent to compressing all the continental mass

down into a thin layer lying just below sea level, and then finding the equipotential surface

for this re-organized earth. The resulting surface (the geoid) will thus not really be an

equipotential surface under continents, but it will be nearly parallel to the equipotential

surfaces up where the leveling observations are made. It is a more useful reference surface

than the Mt. Everest surface, because most of the earth’s surface is at or near sea level.

Incidentally, you need to know the geoid not just for conventional geodetic applica-

tions (that is, for global surveying), but also to interpret long wavelength surface gravity

observations. Suppose you measure gravity on the surface. You get some anomalous

results. You want to use the results to learn about the earth’s density. But, are the

results anomalous because of anomalous density inside the earth, or because there is

topography on the earth’s surface. Specifically, if you observe a gravity high, is it due
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to excess underlying density, or to a depression in the surface at that point — causing

the gravimeter to be closer to the earth’s center where the gravitational acceleration is

larger? The only way to know is to determine the shape of the earth — and that requires

knowledge of the geoid.

4.3.1 The Geoid

Let’s find a relation between the geoid and the earth’s external potential, for an earth

with an arbitrary aspherical shape. The external potential for a realistic earth (including

rotation) has the form

VT =
[
GM

r
+

1

3
Ω2r2

]

︸ ︷︷ ︸
Y 0

0

−
[

1

3
Ω2r2 +

GM

r3
a2J2

]

︸ ︷︷ ︸
Y 0

2

P2(cos θ)

− GM

r

∞∑

l=2

l∑

m=−l
(l,m)6=(2,0)

V m
l Y

m
l (θ, φ)

(
a

r

)l
(4.25)

where the V m
l are constants. Here we have separated the Y 0

0 and Y 0
2 terms from the sum

over l and m, only because we have already considered their effects on the geoid.

There is no l = 1 term in the sum over l because we are assuming the origin of

the coordinate system is the earth’s center of mass. What’s the connection? Back in

Chapter 3, I showed that if you have a density distribution ρ(x′) =
∑
l,m ρ

m
l (r′)Y m

l (θ′, φ′),

then the gravitational potential outside the object would be

V (x) = 4πG
∑

l,m

Y m
l (θ, φ)

2l + 1

1

rl+1

[∫
(r′)

l+2
ρml (r′) dr′

]
.

So, the Y m
1 coefficient in V is proportional to

∫
(r′)

3
ρm1 (r′) dr′. (4.26)

where

ρm1 (r) =
∫ 2π

0
dφ
∫ π

0
sin θ dθ ρ(r, θ, φ)Y m∗

1 (θ, φ).

So Equation 4.26 becomes (dropping the primes on r):

∫

earth
ρ(x)rY m∗

1 (θ, φ) d3x (4.27)
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where d3x = r2 dr sin θ dθ dφ. In terms of rectangular coordinates, the Y m
1 are:

rY 0∗
1 =

√
3

4π
z

rY 1∗
1 = −

√
3

8π
(x− iy)

rY −1∗
1 =

√
3

8π
(x + iy).

So, the integral in Equation 4.26 is proportional to [
∫

earthρz], [
∫
ρ(x − iy)], [

∫
ρ(x + iy)]

depending on the value of m. But, if the origin is chosen to be the center of mass, then
∫
ρz =

∫
ρx =

∫
ρy = 0, so that the integrals for l = 1 vanish for all m. Thus, there are

no l = 1 terms in the expansion of VT .

By collecting all the angular-dependent terms of VT — including the P2 term — into

δV (r, θ, φ), we can write:

VT =
[
GM

r
+

1

3
Ω2r2

]
+ δV (r, θ, φ) (4.28)

Note that δV is much smaller then GM/r.

Equation 4.28 is only valid outside the earth. But let’s now just consider it as a

mathematical expression and extend the expression, as written, down into the earth far

enough that it coincides with mean sea level over the oceans. We then define the geoid

as the surface

r = a + δr(θ, φ),

where the mean of δr is zero, and where VT (r = a + δr, θ, φ) is independent of θ and φ.

So, VT is constant on the geoid. Thus, the geoid won’t really be an equipotential surface

— since our expression for VT does not really equal the potential inside the earth — but

it will be nearly parallel to the equipotential surface at the earth’s outer surface. So, by

assuming that δr/a� 1, and that δV/(GM/r)� 1 and 1
3
Ω2r2/(GM/r)� 1 near r = a,

we obtain:

VT (r = a + δr) ≈ GM

a+ δr
+

1

3
Ω2a2 + δV (a, θ, φ).

In other words, to lowest order we only need to include δr in the leading GM/r term.
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Expanding GM/(a+ δr) to 1st order gives the geoid condition

GM

a

[
1− δr

a

]
+

1

3
Ω2a2 + δV (a, θ, φ) = independent of θ, φ.

So, since GM/a and 1
3
Ω2a2 are already independent of θ and φ, we get:

δr
(
GM

a2

)
= δV (a, θ, φ) + constant.

The constant = 0 if the average of δr is to be 0 (since the average of each Y m
l , and so of

δV , is zero). To lowest order: GM/a2 ∼= gT (r = a) = the acceleration at the surface. So:

δr ∼=
(
δV

gT

)∣∣∣∣∣
r=a

.

That’s the result we derived for the simpler earth models above. Evidently it is always

true.

4.3.2 Stoke’s Formula

You can find δV either from surface gravity observations or from satellite ranging data.

Stoke’s formula is a method for finding the geoid from surface gravity. Here’s how it

works.

The total acceleration vector (gravitational + centrifugal) that affects a gravimeter

is gT = ∇VT . The amplitude of gT (the quantity actually observed) is, to first order in

δV , equal to the negative of the radial component of gT (it’s the negative of the radial

component because the acceleration is downward, and the positive radial direction is

upward). So

gT = −∂rVT =
[
GM

r2
− 2

3
Ω2r

]
− ∂rδV. (4.29)

In practice, you measure gT on the earth’s surface. That surface is

r = a+ δr(θ, φ) +H(θ, φ)

where H(θ, φ) is the surface elevation as determined by leveling. (Leveling gives the

elevation above the geoid.) So, from gravity and leveling, you can determine g on the
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geoid: gg. What you measure with gravimeters is gT (r = a+ δr +H). And gg ≡ gT (r =

a+ δr). To 1st order in H/a:

gg = gT (r = (a+ δr +H)−H)

= gT (r = a+ δr +H)−H ∂rgT |r=a+δr+H .

And, to zero order in H/a and δr/a,

∂rgT |r=a+δr+H
∼= −2GM

r3

∣∣∣∣
r=a+δr+H

≈ −2GM

a3
∼= −2

a
gT

∣∣∣∣
a
.

So:

gg ≈ gT (r = a + δr +H)︸ ︷︷ ︸
gobs

+
2

a
gT

∣∣∣∣
r=a

H.

You measure gobs with gravimeters, and H by leveling. Thus, you can deduce gg from

your observations.

Now, how does gg depend on δV ?

gg = gT (r = a+ δr) ∼= gT (r = a) + δr∂rgT (r = a).

To zero order in small quantities:

∂rgT |r=a = −2GM

a3
= −2

a
gT

∣∣∣∣
a
.

So, to first order, and using Equation 4.29:

gg ∼=
(
GM

a2
− 2

3
Ω2a

)
− ∂rδV |r=a −

2

a
gT

∣∣∣∣
a
δr.

But, δr ≈ (δV/gT ) |r=a. So:

gg ≈
(
GM

a2
− 2

3
Ω2a

)
−
[
∂rδV +

2

a
δV
]∣∣∣∣
r=a

.

So:

gg −
[
GM

a2
− 2

3
Ω2a

]
= −

[
∂rδV +

2

a
δV
]∣∣∣∣
r=a

. (4.30)

This (Equation 4.30) is another result that I had claimed, earlier in this section, was

always true. (For the simpler earth models considered earlier, I had defined the left hand

side of Equation 4.30 as δg.)
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Both gg − [GM
a2 − 2

3
Ω2a] and δr are dominated by the P2 terms. It is usual to remove

those terms from gg and δr. δr minus the P2 terms is usually written as N . The

interpretation of N is that it is the height of the geoid above the ellipsoid (δr = height

of geoid above the surface r = a). So:

N =
∆V

gT

∣∣∣∣∣
r=a

where ∆V = δV after subtracting all P2 terms.

The relation between gg and ∆V is

gg −
[
GM

a2
− 2

3
Ω2a

]
+
[
∂rδV

m=0
l=2 +

2

a
δV m=0

l=2

]∣∣∣∣
r=a

= −
[
∂r∆V +

2

a
∆V

]∣∣∣∣
r=a

.

The left hand side is:

[
gobs +

2

a
HgT

∣∣∣∣
a

]

︸ ︷︷ ︸
gg

−
[(
GM

a2
− 2

3
Ω2a

)
−
[
∂rδV

m=0
l=2 +

2

a
δV m=0

l=2

]∣∣∣∣
r=a

]

︸ ︷︷ ︸
≈γ0

.

The large second bracketed term is approximated by “the international gravity formula”:

γ0 = 978.03185
[
1 + 0.005278895 cos2 θ + 0.000023462 cos4 θ

]
. (4.31)

These numbers come from satellite observations of GM and J2. I’ve talked as though we

only want to remove the constant and P2 terms from gg — but note the cos4 θ term in

γ0 (Equation 4.31). That term represents second order effects of J2 and Ω2 on gg. It’s a

small term, and it is often not necessary to include it when reducing data.

So, defining ∆g = gobs − γ0 + 2
a
HgT |a, we obtain

∆g = −
[
∂r∆V +

2

a
∆V

]∣∣∣∣
r=a

. (4.32)

You know the left hand side from gravity and leveling observations. You then solve

Equation 4.32 for ∆V |r=a. You use the result in N = (∆V/gT )|a to get the geoid

anomaly, N .

So, given δg, how do you solve Equation 4.32 for ∆V ? You start by noting that ∆g

is a function of θ and φ, and so can be expanded as:

∆g =
∑

l,m

gml Y
m
l (θ, φ) (4.33)
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where the gml are constants. ∆V is a function of r, θ, and φ, and so has the expansion

(see Equation 4.25):

∆V = −GM
r

∑

l,m

V m
l

(
a

r

)l
Y m
l (θ, φ). (4.34)

In both expansions (Equations 4.33 and 4.34), the sum over l starts at l = 2, and the

l = 2, m = 0 terms are missing. Then, using these expansions in Equation 4.32 gives:

∑
gml Y

m
l =

GM

a

∑

l,m

V m
l Y

m
l

[
− l + 1

a
+

2

a

]

=
GM

a2

∑

l,m

V m
l (1− l)Y m

l .

So, equating coefficients gives:

gml =
GM

a2︸ ︷︷ ︸
gT |a

(1− l)V m
l (4.35)

Or:

V m
l =

gml
(1− l)gT |a

. (4.36)

We can relate gml directly to the geoid, by expanding

N =
∑

l,m

Nm
l Y

m
l (θ, φ)

with Nm
l = constants. Then

N =
∆V

gT

∣∣∣∣∣
r=a

⇒ Nm
l =

−GM
a
V m
l

gT
= −aV m

l . (4.37)

So:

Nm
l = −

[
a

gT |r=a

] [
gml

1− l
]
.

So if we had the gml coefficients from surface observations, we could easily find the Nm
l ,

and so find N .

Note, incidentally, that short wavelength features are less prominent in the geoid than

they are in gravity. You can deduce this from the (1− l) in the denominator of Nm
l . For

short horizontal wavelengths, l is large, and so Nm
l is proportionally smaller than gml .
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One consequence of this result (i.e. that the geoid is “smoother” than gravity) is

that surface gravity observations are not as useful for finding the geoid as are satellite

observations. Surface gravity gives good short wavelength gravity results, but poor long

wavelength components. And, the geoid is more sensitive to the long wavelength (small

l) terms. Satellites, on the other hand, are best at providing the longer wavelength terms

in VT .

Nevertheless, let’s continue this discussion of how you obtain N from surface gravity

observations. That’s all people could do before satellites. And, in some situations, people

still do it that way. Only, they don’t do it by finding the gml coefficients. Instead, they

use Stoke’s formula. I’ll just outline the derivation.

We have seen that

N = − a

gT |a
∑

l,m

gml
1− lY

m
l (θ, φ). (4.38)

The gml , defined in Equation 4.33, are given by:

gml =
∫

∆g(θ′, φ′)Y m∗
l (θ′, φ′) sin θ′ dθ′ dφ′.

We substitute this integral into Equation 4.38, to obtain:

N = − a

gT |a

∫
∆g(θ′, φ′)

[∑

l

(
1

1− l
)∑

m

[Y m
l (θ, φ)Y m∗

l (θ′, φ′)]

]
sin θ′ dθ′ dφ′. (4.39)

The addition theorem says that the sum over m in Equation 4.39 is

∑

m

[Y m
l (θ, φ)Y m∗

l (θ′, φ′)] =
2l + 1

4π
Pl(cos γ)

where γ = angle between (θ, φ) and (θ′, φ′). So:

N = − a

4πgT |a

∫
∆g(θ′, φ′)

[∑

l

(
2l + 1

1− l

)
Pl(cos γ)

]
sin θ′ dθ′ dφ′.

You can do the sum over l. Define this sum as f(γ), so that:

f(γ) =
1

2

∑

l

(
2l + 1

1− l

)
Pl(cos γ).

It turns out [see Garland, “Introduction to Geophysics,” W.B. Saunders Co., 1979, p161]

f(γ) =
[
1

2
csc

γ

2
− 1− cos γ

]
+ 3

[
1− cos γ − 2 sin

γ

2
− cos γ ln

[
sin

γ

2
+ sin2 γ

2

]]
.
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So:

N = − a

2πgT |a

∫
∆g(θ′, φ′)f(γ) sin θ′ dθ′ dφ′. (4.40)

Equation 4.40 is Stoke’s formula. You determine δg from observations. You then

integrate Equation 4.40 to get N . This doesn’t really get around the problem of not

knowing the long wavelength gml very well from surface observations. The reason you

don’t know them well is because there are many areas of the globe where you don’t have

good surface gravity observations: over the oceans, for example. It turns out that f(γ)

doesn’t go to 0 very quickly as γ → π. That is, there will be significant contributions to

the integral in Equation 4.40 from δg all over the globe. So, areas of sparse data are still

a problem when using Stoke’s formula.

4.4 Satellite Geoids

It is much easier nowadays to determine the global geoid from satellite observations than

from gravity measurements on the ground. From Equation 4.37 we know that the geoid

is

N = −a
∑

l,m

V m
l Y

m
l , (4.41)

where the V m
l are the potential coefficients defined in Equation 4.34 (and in Equa-

tion 4.25). Satellite ranging gives the V m
l , by fitting to the satellite’s orbital motion.

And the V m
l give N directly, using Equation 4.41. (Actually, satellite geodesists usu-

ally use a different normalization for their spherical harmonics, so that their coefficients,

written as Clm and Slm, are proportional to our V m
l ’s.)

We’ll discuss the observed geoid and its geophysical interpretation, later. But as a pre-

view: people have now demonstrated pretty convincingly that the long wavelength geoid

(l from 2 to about 10) is caused by density anomalies associated with convection, and by

convection-driven perturbations of surfaces that have density discontinuities across them

(e.g. the outer surface; the core-mantle-boundary).
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Chapter 5

Stress/Strain Relations

Observational results for surface gravity and for the shape of the geoid tell geophysicists

about the internal density of the earth. Sometimes that density is what the geophysicist is

after. But often the geophysicist wants to learn about the mechanism causing the density

anomaly. For that sort of application you need to know something about how the earth

responds to external and internal forcing. That means you have to know something

about stress and strain inside a solid and how to incorporate stress and strain into the

equations of motion for the earth. That’s what this chapter is about.

First, we’ll talk about stress and strain inside a solid and how they are related. Here

is a very crude qualitative description:

Suppose you have a block of solid material. You deform it somehow. There are

internal forces in the block which resist the deformation, so that when you let go of the

block it tries to spring back to its original shape (unless you’ve deformed it too much).

Think of the deformation as the strain. Think of the restoring forces as the stress.

Somehow we must relate stress to strain. That is, can we infer the restoring forces if we

know the deformation? (Alternatively, if we know the “restoring” forces, can we model

the deformation?) For the earth (and for most materials), as long as the deformation is

small, the stress will be nearly linearly proportional to the strain. That’s a generalization

of Hooke’s Law for a one-dimensional spring: F = kx. Only the stress/strain relation

looks a lot more complicated than this. That’s because:

137
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1. You can’t describe deformation or internal forces with simple scalars like F and x.

Both stress and strain turn out to be tensors.

2. A solid cannot be easily modeled as a set of discrete objects, like springs. It is better

modeled as a continuum. That means we must deal with continuum mechanics —

rather than with the sort of discrete mechanics you learn about in most physics

mechanics courses. To develop the equations of continuum mechanics you break

the medium up into small, discrete blocks and look at the forces on each block, but

then you let the block size go to zero.

Now, let’s get into the details. First, I’ll define the stress tensor, and show how a

solid deforms under certain stresses. Then, I’ll define the strain tensor, and write down

the general relationship between stress and strain.

After that, I’ll describe: incorporating stress and strain into the equations of motion;

waves in a solid; anelasticity.

5.1 Stress tensor

A stress tensor describes internal forces in an object. Consider a small volume from the

interior of a solid body, as in Figure 5.1. What external forces act on this block? There

Figure 5.1:

are “body forces” — that is, forces that originate from an object outside the block and

which act on every molecule within the block. For the earth, the most pertinent of these

would be gravity. But, electro-magnetic (EM) forces also fall into this category.
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There are also “surface forces,” which are the forces that act on the surfaces of the

block from the surrounding molecules — through atomic and molecular bonding. (In a

fluid, the surface force is pressure.) Those forces are primarily between neighbors and

next-nearest neighbors. The surface force per unit area of the surface is called the stress.

Stresses are really internal atomic and molecular forces (EM bonding) — but it is easiest

to model them as acting between and across surfaces, even though there are probably

not well defined surfaces inside the solid.

Pick, say, the y = constant face of the block. See Figure 5.2. The net force acting

z

x

y

e

e
e

y = constant face

Figure 5.2:

on that face from the atoms just outside the block is a vector, and so has êx, êy, êz

components: Fx, Fy, Fz. The stress tensor, τ , is defined so that its elements are the net

force components divided by the area of the face. At least, they are defined that way

when the area of the face is infinitesimal. So:

τyx =
êx component of force on y = constant face

area of y = constant face

τyy =
êy component of force on y = constant face

area of y = constant face

τyz =
êz component of force on y = constant face

area of y = constant face

Similarly, you can define τxx, τxy, τxz, τzx, τzy, and τzz. The first index describes the

orientation of the face, and the second describes the component of the force. Since the

block is infinitesimal, the nine numbers really represent surface forces at a point, P, in

the medium.
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You organize these nine numbers into a tensor:

↔
τ=




τxx τxy τxz

τyx τyy τyz

τzx τzy τzz




Don’t worry about what a tensor is. Just think of it as a matrix. It has the nice property

that if we pick any infinitesimal surface passing through the point P, and if n̂ is the normal

to that surface, then the (force/area) acting across the surface is: (F/area) = n̂· ↔τ , where

this dot product represents vector/matrix multiplication:

n̂· ↔τ= êi
3∑

j=1

njτji

where ê1 = êx, ê2 = êy, and ê3 = êz. (We need to be more careful about the signs. If one

side of the surface is 1 and the other side 2, and if n̂ goes from 1 into 2, then n̂· ↔τ is the

force/area on 1 from 2.) The nice thing is that this result for the force doesn’t require

the surface to be parallel to the xy, xz, or yz planes.

It turns out that the stress tensor is symmetric. That is: τij = τji. To show this,

consider the very small internal block in Figure 5.3, where dx, dy, and dz are infinitesimal.

dx

dy

dz

Figure 5.3:

Newton’s Second Law for the block as a whole is:

ma = F surface + F body (5.1)

where m and a are the mass and acceleration of the block, F surface is the sum of all surface

forces acting on the block, and F body is the sum of all body forces acting on the cube.

F body = (body force density)× volume
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m = (mass density)× volume

F surface = (surface stress)× area (5.2)

The volume is proportional to (dx dy dz). The area is proportional to (dx dy) or (dx dz)

or (dy dz), depending on which face we are considering. So, for infinitesimal dx, dy,

and dz, the volume � area. So, for a small block, Equations 5.1 and 5.2 imply that

F surface = 0 to lowest order in dx, dy and dz. You can go through the same reasoning to

conclude that the total torque on the infinitesimal cube due to surface forces (stresses)

is zero, to lowest order.

These results imply that
↔
τ is symmetric (actually you only need the zero torque

result). Consider, for simplicity, a two-dimensional stress field, where τyi = τiy = 0 for

all i. See Figure 5.4.

z

e x

e ye
dy

dx

dz
F

F

F F

F

F

F F

xz

xx

zz zx

xz

xx

zx
zz

Figure 5.4:

The Fij represent the force on a face. For example:

Fxx = τxx dy dz Fzz = τzz dx dy

Fxz = τxz dy dz Fzx = τzx dx dy
(5.3)

Note that I have labeled these forces so that the forces on opposite faces are equal.

In other words, Fxx on the right hand face = Fxx on the left hand face, and similarly

for Fxz, Fzz, and Fzx. Why can I do that? Well, really Fxx on the left hand face should

be τxx(x) dy dz and Fxx on the right hand face should be τxx(x+ dx) dy dz. That is, the
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forces are different because τxx is a function of x. But: τxx(x + dx) ≈ τxx(x) + dx ∂xτxx.

And, to zeroth order in dx (remember — “no surface torques” is only valid to zeroth

order), dx ∂xτxx is negligible. So τxx(x + dx) ≈ τxx(x), to zeroth order. Thus, Fxx is the

same on both faces. Similarly for the other Fij’s. This means that the requirement that

there be no net force on the cube is automatically satisfied. The condition of no net

torque means:

dz

2
2Fzx (= clockwise torque) =

dx

2
2Fxz (= counterclockwise torque).

Thus, dz Fzx = Fxz dx. Combining this result with Equation 5.3 gives τzx = τxz. You

can go through a similar argument in the full three-dimensional case to conclude that

τij = τji for all i, j.

So, there are really only six independent stress components. I’ll label them as

τ11, τ12, . . . , instead of τxx, τxy, . . . , so that:

↔
τ =




τ11 τ12 τ13

τ12 τ22 τ23

τ13 τ23 τ33




5.2 Stress-Induced Deformation

So, now we know something about stresses and how they relate to forces. How do stresses

deform material? For the moment we’ll only worry about the deformation induced by

the diagonal terms in τ : τ11, τ22, τ33.

Assume, first, that τ11 is the only component not equal to zero. Start with the

infinitesimal block shown in Figure 5.5, which has sides of length dx, dy, dz. We apply

the forces F11, as shown, where F11 = τ11 dy dz. The block deforms. One thing that

happens is that the width of the block lengthens by ∆x. It is like stretching a spring.

Hooke’s Law says that the restoring force on a spring is linearly proportional to the

amount the spring has stretched. It works well, so long as the spring is elastic and is not

stretched too much.
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∆ x

F11

F11

dx

Figure 5.5:

Let’s assume the solid in Figure 5.5 is elastic and is not deformed too much. This

assumption means that the block returns to its initial state immediately after the forces

are removed. The elastic assumption is pretty good for the earth at short time periods

(for example, at seismic periods of minutes or less). It is not as good at very long time

periods (thousands to millions of years). We’ll extend our results to include anelasticity

later.

For an elastic, slightly deformed solid, we might expect to find a generalization of

Hooke’s Law:

F11 = k∆x. (5.4)

It turns out that this generalization works pretty well for small ∆x. The constant k

depends on the material and on the size and shape of the block. Let’s try to find the

dependence on the size and shape.

First, how does k depend on the unstretched length, dx? Imagine cutting the block

in half, as in Figure 5.6. Consider, say, the left half. The right half exerts the force F11

F11

dx/2 dx/2

F11

Figure 5.6:

on the left half (see Figure 5.7). We know this must be true, because the net force on the
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infinitesimal half-block vanishes (to lowest order in the size of the block). By symmetry,

11

x/2∆

F11F

dx/2

Figure 5.7:

the left half must absorb half the increase in length. So, the left half stretches by the

amount ∆x/2. So, for this half block:

F11 = k 1
2

(
∆x

2

)

where, k1/2 represents the value of k for the half-block. By equating the F11 equations

for the full block and the half block, we note that k1/2 = 2k. So, when we divide the

block by 2 we double k. We can obviously extend this result by dividing the original

block into smaller blocks of any size. We conclude that k is inversely proportional to the

length. That is, k is proportional to 1/dx. Define k′ so that k = k′/dx. Using this in

Equation 5.4 gives

F11 = k′
∆x

dx
(5.5)

Next, how does k′ depend on the cross-sectional area: dy dz in this case? Go back to

the original block and cut it in half lengthwise. See Figure 5.8. The cross-sectional area

∆ x

F11/2

F11/2 F11/2

F11/2

dx

Figure 5.8:

on one face of the half-block is now (1/2) dy dz, instead of dy dz. By symmetry, the force

on a half-block face should be F11/2, as shown.
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The stretching of each-block is still ∆x, and the unstretched length is dx. Hooke’s

Law (Equation 5.5) applied to a half-block is now

1

2
F11 = k′1

2

∆x

dx
(5.6)

where k′1/2 = k′ for the half-block. Comparing Equations 5.5 and 5.6 gives: k′1/2 = k′/2.

So, reducing the area by 1/2, reduces k′ by 1/2, implying that k′ must be proportional to

dy dz. Define E ≡ Young’s modulus, so that k′ = E dy dz. Then Equation 5.5 becomes:

F11 = E dy dz
∆x

dx
.

Or:

τ11 =
F11

dy dz
= E

∆x

dx
.

Define ε11 ≡ ∆x/dx = (change in length)/(length). The reason for the two subscripts on

ε will be clear later. Then:

τ11 = Eε11. (5.7)

Equation 5.7 is a generalized Hooke’s Law for solids. E ≥ 0 for reasonable materials.

Otherwise, when you pull on an object it would contract.

The forces F11 will change the other dimensions, as well. For example, (see Figure 5.9)

F11 F11

∆ z

dz

Figure 5.9:

assume the height before deformation is dz, and that when you apply F11 on each side,

the height increases by ∆z (∆z will probably be negative). You can go through an

argument similar to the one above for ∆x — using, again, a generalization of Hooke’s

Law — to get a relation similar to Equation 5.7:

τ11 = −
(
E

ν

)
∆z

dz
= −

(
E

ν

)
ε33
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where ε33 ≡ ∆z/dz = (change in height)/(height). We write the proportionality constant

here as (−E/ν), instead of using a single variable, to conform with convention. ν is called

Poisson’s ratio and is dimensionless. (E, here, is the same Young’s modulus that appears

in Equation 5.7.) The minus sign is present because for most materials ν ≥ 0. (If you

pull on the block, its height decreases.) Note that this result for ε33 can be combined

with Equation 5.7 to give:

ε33 = −νε11

You can do something similar for ∆y/dy ≡ ε22 to find

τ11 = −(E/ν)ε22 and ε22 = −νε11.

For isotropic materials — and we will always assume isotropic materials here (isotropic

means that the material properties are independent of the orientation of the applied

stresses) — the ν’s in the ε22 and ε33 equations are the same.

It turns out that for “reasonable” materials, ν ≤ 1/2. To see this, suppose we apply

stresses τ11 = τ22 = τ33 = −P, and that τij = 0 for i 6= j. The symbol P is appropriate,

because if the τii’s are equal, and τij = 0 for i 6= j, then the τii’s are the negative of the

pressure (a positive τii means an outward force on an object — but pressure is inward).

Each of the τii perturb the three sides dx, dy, dz — increasing them by ∆x, ∆y, ∆z.

From the results above we conclude that for an isotropic material:

∆x = τ11
1

E
dx− τ22

ν

E
dx− τ33

ν

E
dx

∆y = −τ11
ν

E
dy + τ22

1

E
dy − τ33

ν

E
dy

∆z = −τ11
ν

E
dz − τ22

ν

E
dz + τ33

1

E
dz.

(Without the isotropic assumption, the ν’s and E’s above might all be different.) So:

∆x = (τ11 − ντ22 − ντ33)
dx

E
= −P (1− 2ν)

dx

E

∆y = (τ22 − ντ11 − ντ33)
dy

E
= −P (1− 2ν)

dy

E

∆z = (τ33 − ντ11 − ντ22)
dz

E
= −P (1− 2ν)

dz

E
.
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So, the new volume of the solid is:

(dx+ ∆x)(dy + ∆y)(dz + ∆z) = dx dy dz

[(
1 +

∆x

dx

)(
1 +

∆y

dy

)(
1 +

∆z

dz

)]
.

To lowest order in the deformation (∆x/dx, ∆y/dy, ∆z/dz are small), this new volume

is:

dx dy dz

[
1 +

∆x

dx
+

∆y

dy
+

∆z

dz

]
= dx dy dz

[
1− 3(1− 2ν)

P

E

]
(5.8)

The original volume was dx dy dz. So, the change in volume is Equation 5.8 minus

dx dy dz. Thus, the change in volume (≡ ∆V ), divided by the original volume (≡ dV ) is:

∆V

dV
= −

(
3(1− 2ν)

E

)
P.

If K ≡ bulk modulus ≡ E/3(1− 2ν) then

P = −K∆V

dV
(5.9)

Since E > 0, then ν > 1/2 would imply that K < 0. That would mean that if

you squeezed the block (P > 0), the volume would increase. That’s unphysical, and so

0 < ν ≤ 1/2.

5.3 Response to τij for i 6= j

The section above shows that we can describe the response of a solid, isotropic block to

τ11, τ22, and τ33, using two independent constants: either (E and ν) or (K and ν) (or (E

and K), but that combination is rarely used).

I claim that we can describe the response to the other τij (i 6= j) with the same two

elastic constants. The reason for this is that for any stress field you can come up with,

there is a coordinate system in which τij = 0 for i 6= j. Another way to put that is that

because
↔
τ is symmetric, we can always find a coordinate system where

↔
τ is diagonal:

i.e. where only τ11, τ22, and τ33 6= 0. And, the response to the τii’s can be described with

just those two constants.

Let’s try to see, physically, why any stress field looks like a normal stress field in

some coordinate system. Suppose, for example, that we choose an infinitesimal cube
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with sides along the êx, êy, and êz axes, as shown in Figure 5.10, and we find that the

diagonal elements of the stress tensor are zero (i.e. τii = 0 for every i). In fact, suppose,

zxF

Fzx Fzx

Fzx

Figure 5.10:

for simplicity, that all stress components with a y-index are 0, so that the only surface

forces acting on the cube are those shown in Figure 5.10. Each of the four force arrows

in Figure 5.10 has the same length (Fzx), because the stress tensor is symmetric and

because each face is assumed to have the same area. We bisect this cube along the

upper left-lower right diagonal, so that the volume above the diagonal is as shown in

Figure 5.11.

45

zxF

zx

FzxF = 

F

2

Figure 5.11:

The arrow pointing away from the diagonal in Figure 5.11 is the force on the diagonal

face of the half-cube, and it is normal to this face (with length
√

2Fzx). That’s because

the sum of all the surface forces acting on an infinitesimal object must vanish, to lowest
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order in the dimensions of the object (we saw that, earlier). Similarly, if we bisect the

Figure 5.10 cube between the upper right and lower left corners, we find that the force

on that diagonal face is normal to the face. See Figure 5.12.

F2 zx

Fzx

zxF

F = 

Figure 5.12:

So, we have found two mutually perpendicular planes where the surface forces are

normal to the surfaces. That means, we didn’t cut our infinitesimal cube in a clever way.

We should have cut out a cube oriented as in Figure 5.13. Then, the surface forces would

new cube

original cube

Figure 5.13:

be normal to the new cube. And, if our local êx, êy, êz axes are re-defined to be parallel

to the faces of the new cube,
↔
τ would be diagonal in the new system.

The above argument can be extended to a more general three-dimensional case, where

the τii are not zero, only it’s harder. It is easier to simply trust in the result from linear

algebra, that says that any symmetric matrix can be diagonalized.
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In the diagonal system:

↔
τ=




τ11 0 0

0 τ22 0

0 0 τ33



.

The τii may not be equal. If they were equal, then the internal stress field would be

equivalent to a hydrostatic pressure field: i.e. τ would have the form
↔
τ= −P

↔
I where

τ11 = τ22 = τ33 = −P, and
↔
I is the identity matrix (tensor). But, the identity tensor is

unaffected by rotations into new coordinate systems. So,
↔
τ= P

↔
I in every system.

If the τii are not equal in the diagonal system, then there will be shear stresses (τij 6= 0

for i 6= j) in other systems. But, no matter what the system, [τ11 + τ22 + τ33] is always

the same — this is a property of matrices (the sum of the diagonal components is the

same in every system). So, for any stress tensor we define the pressure as

P = −1

3
[τ11 + τ22 + τ33] .

Then, we think of
↔
τ as consisting of pressure (−P

↔
I ) plus a remainder. The remainder

is called the deviatoric stress, and is written as
←→
δτ :

←→
δτ =

↔
τ +P

↔
I .

All shear stresses are described by
←→
δτ . For a fluid,

←→
δτ = 0.

To find the deformation produced by an arbitrary stress tensor
↔
τ we can proceed in

three steps:

The Procedure:

1. Transform the stress tensor to the diagonal (“principal-axis”) system.

2. Find the deformation (∆x, ∆y, ∆z) in that diagonal system, using (E, ν) or (K, ν),

and the results of the preceding section.

3. Transform the deformation field back into the original system.

Of course, we don’t want to have to go through this procedure every time we are

given a new stress tensor. Instead, we want to work the method through just once for
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an arbitrary stress tensor, to obtain a general relation between stress and deformation

that can be easily applied to any situation. The algebra is messy. It involves finding the

diagonalizing rotation matrix for an arbitrary stress tensor, taking its inverse, multiplying

the matrices together, etc. I’m not going to go through it all here, but will simply write

down the answer. But, I can’t do that quite yet, because I haven’t defined enough

quantities to describe deformation in an arbitrary system. All I’ve done, so far, is to

describe the quantities ∆x/dx, ∆y/dy, and ∆z/dz, which describe what happens to line

elements when they are stretched outward or inward, along their lengths.

To describe deformation in the more general case, I need to define a matrix, called

the strain tensor. The three numbers ∆x/dx, ∆y/dy, and ∆z/dz, turn out to be the

diagonal elements of that tensor.

5.3.1 Strain Tensor

It turns out that you need nine numbers to describe an arbitrary displacement of the

material in a small block. Suppose you have two points in a solid, initially both on the

êx axis a small distance dx apart, as shown in Figure 5.14. The solid is then deformed,

dx

1 2

Figure 5.14:

so that the right hand point moves up along the êz axis and out along the êx axis, as

shown in Figure 5.15. We can describe this deformation with two numbers: ∆z and ∆x.

∆ xdx

∆ z

Figure 5.15:

If there is also a displacement in the êy direction, then we need a third number: ∆y. In
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Section 5.2, this dx line element only stretched in the êz direction, so we only needed to

introduce the quantity ∆x to describe it. Here, we need three quantities. Only, let’s use

ratios with respect to dx for our three numbers:

∆x

dx
,

∆y

dx
,

∆z

dx
.

Similarly, if two points separated along the êz direction are displaced by ∆x, ∆y, ∆z, we

need the numbers:
∆x

dz
,

∆y

dz
,

∆z

dz

to describe the deformation of the line between those two points. (dz = unperturbed line

length.) And:
∆x

dy
,

∆y

dy
,

∆z

dy

are needed to describe the deformation of a line along the êy axis. (Note: ∆x, for example,

is different for each of the three lines.)

So, it looks like we need nine numbers to describe deformation: we must specify what

happens to the original êx, êy, and êz axes at any point — and it takes three numbers

to describe the deformation of each of these three axes. This suggests that a reasonable

definition of the strain tensor ought to be the matrix with elements ∆x/dz, etc. For

example, the (ij)th element would be ∆ri/drj (where dr1 = dx, dr2 = dy, etc.).

Well, we could certainly construct a 3×3 matrix this way, but it turns out it wouldn’t

be the “right” matrix. What happens is that when we go through “The Procedure” de-

scribed above, we find that only six independent, linear combinations of the nine numbers

appear in the final result. Three independent, linear combinations do not appear. The

three combinations that do not appear represent rotations of infinitesimal blocks.

Here’s how these linear combinations are defined: The quantities ∆x/dz, etc., can be

affected either by deformation of the infinitesimal block, or by rotation. By “deformation”

I mean displacements which can be caused by stress on the block. We have seen that

you can always find a coordinate frame where the stress tensor is diagonal. And, in

that frame, the displacements represent pure stretching. That is, ∆x/dx, ∆y/dy, and

∆z/dz are, in general, non-zero, but all other ∆ri/drj = 0. So, by “deformation,” I
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mean values of ∆x/dx, ∆x/dy, etc., which when transformed to some coordinate system,

represent pure stretching. I claim that means that deformational displacements must

satisfy ∆z/dx = ∆x/dz, ∆z/dy = ∆y/dz, and ∆y/dx = ∆x/dy.

There are two ways to see this. One is that for deformation, the matrix of ∆x/dx,

∆y/dx, etc., can be diagonalized by a rotation (a unitary transformation). That means

the matrix must be symmetric.

The other way is to define two matrices εij and ωij so that

ε13 =
1

2

[
∆x

dz
+

∆z

dx

]
, ω13 =

1

2

[
∆x

dz
− ∆z

dx

]

etc., for the other εij, ωij (note: ωii = 0). Then, think of the elements ∆x/dx, ∆x/dy,

etc., as linear combinations of the ε’s and ω’s. For example:

∆x

dz
= ε13 + ω13

∆z

dx
= ε13 − ω13.

I claim that the ωij describe rotations — not deformation. For example, suppose ω13 6= 0,

but — for simplicity — suppose ε13 = 0. Then

∆x

dz
= ω13 = −∆z

dx
. (5.10)

Consider the central point, O, of a cube, as shown in Figure 5.16. Consider the four

line segments connected to O with endpoints at dx, −dx, dz, and −dz. The arrows in

∆ z

∆ x

x−∆

z−∆dx-dx

-dz

dz

O

Figure 5.16:

Figure 5.16 represent the displacements corresponding to Equation 5.10. They describe
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a rotation, not a deformation. They look like a rotation in every frame — never a

“stretching.”

So, for deformation ω13 = 0⇒ ∆x/dz = ∆z/dx. Similarly for ∆x/dy, etc.

The result of all this is that the εij describe the deformational contributions to ∆x/dx,

∆x/dy, etc. So, we define the strain tensor,
↔
ε , so that its elements are

εij =
1

2
[∆ri/drj + ∆rj/dri] . (5.11)

It turns out that this is a perfectly good tensor. In fact, it is symmetric, and the diagonal

elements are ε11 = ∆x/dx, ε22 = ∆y/dy, ε33 = ∆z/dz.

5.3.2 Relation between stress and strain

We are now ready to write down the results of applying “The Procedure” described

above, to find the deformation caused by an arbitrary, non-diagonal stress tensor. We

find that in the original system the stress and strain are related to each other linearly,

according to:

τij =
∑

k,l

Λijkl εkl (5.12)

where Λ is a 4th rank tensor. Think of Λ as the product of rotation matrices, with the

principal-axis stress-strain relation stuck in the middle.

For an isotropic material, such as we’re considering here, it just takes two parameters

to characterize Λ. Those parameters could be (ν, E) or (ν,K). Instead, at this point, it’s

more convenient to define two new independent parameters — called Lamé parameters:

µ =
E

2(1 + ν)

λ = 2µ
ν

1− 2ν
.

In terms of these parameters, it turns out that

Λijkl = 2µ δik δjl + λ δij δkl (5.13)

where the δ’s are Kronecker delta’s. Putting Equation 5.13 into Equation 5.12 gives:

τij = 2µεij + λδij
3∑

k=1

εkk. (5.14)
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5.4 Relation between stress/strain and the

displacement field

The problem with the strain tensor as defined in Equation 5.11, is that it involves dis-

placements of line elements, which don’t have a lot of physical significance. When solving

a geophysical problem, you are usually interested in knowing the displacements of indi-

vidual points inside the earth. Here we define the displacement field, and show how to

represent the strain tensor in terms of the displacement components.

Suppose we have a solid object. We deform the object so that the displacement of any

point originally at x is s(x). So, the point is now at x+ s(x). What is the strain tensor

at that point, in terms of s? Our result above for strain is in terms of displacements

of infinitesimal line elements. So, how do those displacements relate to s? Suppose,

for example, that all displacements are in the êx direction. So, before the deformation

we have Figure 5.17. After the deformation (if s has only a êx component) we have

undeformed line element

x = (x, y, z) (x + dx, y, z)

Figure 5.17:

Figure 5.18. So:

x s x+ ( ) = (x + s x (x), y, z) sx (x+dx), y, z)(x + dx +

deformed line element

Figure 5.18:

∆x = [[x + dx+ sx(x + dx)]− (x+ sx(x))]− dx

= [deformed length]− undeformed length

= sx(x + dx)− sx(x).
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So in the limit as dx→ 0:
∆x

dx
→ ∂xsx.

Similarly: ∆z/dx→ ∂xsz, ∆y/dx→ ∂xsy, ∆x/dz → ∂zsx, etc. So:

εij =
1

2
[∂isj + ∂jsi] . (5.15)

Equation 5.15 is the strain tensor in terms of the displacement field, s(x).

Now, suppose we take this result (Equation 5.15) for εij, and use it in the stress/strain

equation (Equation 5.11). We obtain:

↔
τ= µ

[
∇s+ (∇s)T

]
+ λ∇ · s ↔I (5.16)

where
↔
I = identity tensor (matrix), and ∇s, (∇s)T are tensors:

(∇s)ij = ∂isj

(∇s)Tij = ∂jsi

where T means transpose.

5.5 Remarks

1. µ is called the rigidity. If µ = 0, then τij = 0 if i 6= j, and τii is the same for all

i. In other words,
↔
τ is diagonal with equal diagonal elements. So,

↔
τ represents a

hydrostatic pressure — with no shear stresses. In this case, the material is a fluid:

it cannot support shear.

2. Suppose µ 6= 0. Then, there are shear stresses, in general. We still can define the

hydrostatic pressure as:

P = −1

3

∑

i

τii

= −1

3

∑

i


2µεii + λ δii︸︷︷︸

=1

∑

k

εkk




= −2µ+ 3λ

3

∑

k

εkk.
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For an infinitesimal block:

∑

k

εkk =
∆x

dx
+

∆y

dy
+

∆z

dz
=

∆V

dV

where dV = the unperturbed volume of the block, and ∆V = the change in volume.

So:

P = −2µ+ 3λ

3

∆V

dV
.

Thus, by comparing with Equation 5.9, we would expect that (2µ+ 3λ)/3 = K =

bulk modulus, and this is indeed what we find.

3. For an incompressible material, we can apply any pressure we want and ∆V should

be 0. That’s the definition of incompressible: you can’t change the volume of

any small interior cube. That means, K = ∞ characterizes “incompressible.” So,

2µ+ 3λ =∞ for an incompressible solid. But, µ is finite (at least, for a non-rigid

material). So, λ = ∞ for an incompressible material. But, you don’t want ∞’s in

your equations.

So, what happens to Equation 5.16 for an incompressible material? If λ = ∞ and
↔
τ= finite in that equation, then

∇ · s = 0 (5.17)

must hold. (Another way to obtain this result is to note that ∇ · s =
∑
εkk =

∆V /dV = 0 for an incompressible material.) Equation 5.17 is the condition for

incompressibility. But, what do we do about the term

λ(∇ · s) =∞ · 0 = indeterminate (5.18)

in Equation 5.16? Well, it turns out that this term equals −P. That’s because

P = −2µ
3

∑
εkk(= 0) − λ∑ εkk = −λ∑ εkk = −λ(∇ · s). So, for an incompressible

material Equation 5.16 reduces to:

↔
τ = µ

[
∇s+ (∇s)T

]
−P

↔
I

∇ · s = 0. (5.19)
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Note that we have had to introduce the extra unknown, P, and that we have an

extra equation (∇ · s = 0). Equation 5.19.

People often use the incompressible assumption for the earth because: (1) it’s

not too bad an assumption for many applications; and (2) it usually simplifies

the mathematics, despite the fact that it requires an extra equation and an extra

unknown.

5.6 Putting
↔
τ into F = ma

We now know how to find
↔
τ from s. The equation we use for this, Equation 5.16, is the

continuum mechanics analogue of Hooke’s Law, F = kx, for a spring. The stresses, in

turn, act across internal surfaces to cause the displacement field s. To describe the latter

process, we need to derive the continuum mechanics analogue of F = ma.

To obtain this equation we divide the material into blocks, and write down F = ma

for each block. The internal stresses enter into the F = ma equation for a block, because

they represent surface forces acting across the faces of the block. But the separation into

individual blocks is purely artificial: it is unlikely that there are well-defined surfaces

inside the material. Ultimately, we want to somehow come up with a body force repre-

sentation for the stresses, that we can then use in our continuum mechanics version of

F = ma.

Suppose we start with a block of material from inside the object, as in Figure 5.19.

The block need not be infinitesimal. Let the block have volume V and surface S. Let ρ

Figure 5.19:
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be the density inside the block. We apply forces to the block: F body and F surface where

F body is the net body force (gravity, etc.) and F surface is the surface force (stress × area).

So:

F body =
∫

V
f dV

where f = body force per unit volume (for gravity, f = ρg), and

F surface =
∫

S
n̂· ↔τ dS

where n̂ = normal to S, pointing outward from the block. These forces cause the block

to accelerate. The acceleration is

a = ∂2
t xCM

=
∂2
t

∫
V ρs dV
m

=

∫
V ρs̈ dV
m

where xCM is the position of the block’s center of mass, s is the displacement field within

the block, and m is the mass of the block. Then, F = ma for the block becomes:

∫

V
ρs̈ dV =

∫

V
f dV +

∫

S
n̂· ↔τ dS.

By the divergence theorem:

∫

S
n̂· ↔τ dS =

∫

V
∇· ↔τ dV (5.20)

where ∇· ↔τ is a vector with ith component:

(
∇· ↔τ

)
i

=
3∑

j=1

∂j τji.

(You may not be familiar with the tensor divergence theorem. But you can obtain this

result by separating
↔
τ into column vectors, and using the vector divergence theorem on

each of those vectors.) So, F = ma for the block reduces to:

∫

V

[
ρs̈− f −∇· ↔τ

]
dV = 0 (5.21)
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Since Equation 5.21 is true for arbitrary V, the integrand must vanish everywhere:

ρs̈ = f +∇· ↔τ (5.22)

We identify ∇· ↔τ as the body force due to stress.

Equation 5.22 plus the relation Equation 5.16 between
↔
τ and ∇s, etc., is a complete

set of differential equations for s. These equations tell us how the earth responds to

internal and external forcing.

5.6.1 Example: Waves in a homogeneous, isotropic, ∞
medium

Suppose there are no body forces. Then ρs̈ = ∇· ↔τ . Or, in component form:

ρs̈i =
∑

j

∂j τji for i = 1, 2, 3. (5.23)

And for an isotropic material:

τij = µ [∂i sj + ∂j si] + λδij
∑

k

∂k sk. (5.24)

Put Equation 5.24 for τij into Equation 5.23, and we have an equation for s. Most of

seismology involves solving this equation for specified functions of position µ(x) and λ(x),

and for specified external boundaries of the material. (We haven’t talked about what

happens at an external boundary of the object. If there are no applied external surface

forces on the object, then there are homogeneous boundary conditions on
↔
τ . Specifically:

n̂· ↔τ = surface force = 0 on the boundary. If there is an applied, external surface force,

f s, then the boundary condition is n̂· ↔τ= f s.)

For a homogeneous material µ and λ are constants, and so:

∑

j

∂j τji =
∑

j

[
µ
(
∂i ∂j sj + ∂2

j si
)]

+ λ
∑

j

∂j

(
δij
∑

k

∂k sk

)

= µ∂i
(
∇ · s

)
+ µ∇2si + λ∂i

(
∇ · s

)
.

Or:

∇· ↔τ= µ∇2s+ (µ+ λ)∇
(
∇ · s

)
.
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Using this in Equation 5.23 gives:

ρs̈ = µ∇2s+ (µ+ λ)∇
(
∇ · s

)
(5.25)

This is the partial differential equation for s in a homogeneous solid.

There are two types of solutions to this equation:

5.6.2 p-waves: longitudinal or sound waves

Take ∇ · Equation 5.25. Then, since ∇ commutes with ∇2 and with ∂2
t :

ρ∂2
t (∇ · s) = µ∇2∇ · s+ (µ+ λ)∇2(∇ · s).

Or, defining ∆ ≡ ∇ · s ≡ dilatation:

ρ∆̈ = (2µ+ λ)∇2∆. (5.26)

This is a wave equation for the scalar ∆. Solutions have the form:

∆ = ei(k·r−ωt) (5.27)

where k = wave vector (k/|k| is the direction of wave propagation, and k = |k| =

2π/wavelength), and ω = angular frequency. Putting Equation 5.27 into Equation 5.26

gives: ρω2 = (2µ+ λ)k2. So:

ω

k
=

√
2µ+ λ

ρ
.

And, ω/k = wave velocity = vp. The subscript ‘p’ stands for primus. This letter was orig-

inally assigned to these waves, because they are the first waves to arrive at a seismometer

following an earthquake. Typically, within the earth:

vp ≈





6 km
sec near the surface

13 km
sec in the lower mantle.

These “p-waves” are compressive, or sound, waves. They involve a change in volume

of the material the wave passes through. That’s because

∆ = ∇ · s =
∑

k

εkk =
∆V

V
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for a small block. (Note: for an incompressible material which cannot undergo volume

changes, λ =∞, so that vp =∞.)

These waves also involve displacements along the direction of motion. To see this,

suppose

s = Aei(k·r−ωt). (5.28)

Then:

∆ = ∇ · s = i(k ·A)ei(k·r−ωt).

If ∆ 6= 0 (as it must if there is a p-wave), then k ·A 6= 0, so the direction of motion (k/k)

and the direction of displacement (A/A) are not perpendicular. This is why p-waves are

sometimes called longitudinal waves.

5.6.3 s-waves: transverse waves

Take ∇× Equation 5.25. Then, since ∇× (∇f) = 0 for any scalar f , we get:

ρ∂2
t (∇× s) = µ∇2(∇× s). (5.29)

Equation 5.29 is a wave equation for the vector ∇× s. Solutions have the form:

∇× s = Aei(k·r−ωt). (5.30)

Equation 5.30 is a traveling wave with wave vector k and frequency ω. It satisfies the

differential equation if ω/k = wave velocity =
√
µ/ρ. This wave velocity is usually

written as vs. The ‘s’ stands for secondus. These waves arrive at a seismometer after

p-waves (they are called s-waves). Note that vs < vp (because µ < 2µ + λ). Typically,

within the earth:

vs ≈





3.5 km
sec near the surface

7 km
sec in the lower mantle.

There are no s-waves in the fluid core, since µ = 0 in a fluid. The absence of s-waves

traveling through the core is why we know there is a fluid core.

S-waves involve no displacements along the direction of motion, which is why they

are called transverse waves. That’s hard to show using this method for deriving s-waves,

so I’ll skip it.
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5.6.4 The general case

After an earthquake, the real earth has all sorts of waves traveling through it. The

earthquake generates p- and s-waves, which travel through the earth until they hit a

discontinuity — a place where the material properties change abruptly. There, they gen-

erate transmitted and reflected waves. A p-wave hitting a boundary can cause reflected

and transmitted p- and s-waves. The situation is similar for an incident s-wave. And,

there are lots of boundaries.

As a further complication, the earth’s free outer surface gives rise to another sort of

wave: a “surface wave.” (The p- and s-waves are called “body waves.”) A surface wave

is a solution to Equation 5.25 which varies periodically with distance along the surface,

but decays exponentially with depth into the earth. These waves can’t exist in an infinite

medium, because they would grow exponentially with radius, and so be unbounded.

5.7 Anelasticity

Real materials do not deform elastically. If you apply a stress to a material it does not

immediately deform to its final state. There will probably be an instantaneous response

followed by some sort of slow deformation.

People have come up with all sorts of mathematical models to describe anelasticity.

In all cases, the stress is modeled as dependent on strain in some way. Except that for

an anelastic material, the dependence is not simple multiplication by a constant.

The most mathematically complicated models are those where the stress is not a

linear function of strain. Laboratory materials often behave in a non-linear manner,

particularly when subjected to large stress. A familiar model is one where the strain rate

(the time derivative of strain) is proportional to stress raised to the nth power, where n

is greater than 1 (typically, n ≈ 3 or so). For small stresses, though, people often find

they can get away with a linear stress-strain relation. That’s certainly true for seismic

applications. And it is usually valid for studies of the response of the earth to surface

loading, which we will consider later. Linear models are convenient because they are
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relatively easy to implement.

It should not be surprising that linear models tend to work reasonably well for small

stress perturbations. You obtain a linear model by expanding a non-linear model to first-

order in the stress perturbation. For example, if σ0 is the background stress level, and δσ

is the perturbation in stress caused by whatever geophysical process you are considering,

then the first-order Taylor series expansion of σn = (σ0 + δσ)n is σn0 + nσn−1
0 δσ, which is

linear in δσ.

The consequence is that geophysicists usually assume the rheology for an anelastic

material is linear (consistent with the standard scientific procedure of using the simplest

model which can explain the observations). Except that here the “linear relation” is not

simply multiplication by a constant (if it were, the material would be elastic). It involves,

also, taking time derivatives or integrating over time.

A simple example of anelastic behavior in the real world is air resistance. In that

case, the anelastic force is proportional to the velocity — which is the time derivative

of the displacement (F = bẋ). This is analogous to the stress being proportional to the

strain rate. Because the time derivative is a linear operator, the stress-strain relation in

this case is linear.

5.7.1 The general linear model

The most general, linear relation for an anelastic material is of the form

∑

k,l

Wijkl τkl =
∑

k,l

Xijkl εkl for all i, j (5.31)

where W and X may involve multiplication by constants, time derivatives of any order,

and time integrals of any order. (For example: a second order integration term in X

would look like
∫ t
0(
∫ t′
0 εkl(t

′′) dt′′) dt′.)

People have used all sorts of different W ’s and X’s to model geophysical processes.

They find they need different W ’s and X’s for different processes. For example, different

models are required at the short periods (seconds to minutes) and small stresses appro-

priate to seismic waves, than at the long periods (thousands to millions of years) and
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relatively large stresses appropriate for tectonics and much of geodesy. It is not yet clear

what happens at intermediate periods. Earth tides and earth rotation can maybe help

with that in the future.

Evidently, different mechanisms are dominant in these different regimes. For seismic

waves, the anelastic mechanism may have something to do with the opening and closing

of pre-existing cracks in the medium, as the wave passes through. Or, it may involve the

two sides of a crack sliding past one another (equivalent to simple friction).

In the tectonic regime the important mechanisms probably involve either diffusion

(at high temperatures, molecular bonds are weak and so molecules diffuse over time) or

dislocation creep (a dislocation, such as in Figure 5.20, that moves through a crystal over

time).

dislocation

Figure 5.20:

Since people don’t really understand the mechanisms very well, the usual mathe-

matical approach used for modeling in-situ geophysical observations is to try to find

the simplest W and X which explain those observations, and then to see what those

mathematical results might tell you, if anything, about the mechanisms.
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5.7.2 The Frequency regime

People usually work in the frequency regime. That is, they Fourier transform Equa-

tion 5.31 from the time domain to the frequency domain. They also transform the

equation for conservation of momentum, Equation 5.21, into the frequency regime (for

example, replacing s̈ with −ω2s). They then solve all these equations for the Fourier

transform of s, and take the inverse Fourier transform to get s in the time domain.

Why go to the frequency domain? Because then ∂t → iω and
∫
dt → 1/iω. So, in

the frequency domain, W and X get replaced by simple multiplication operators — only

where the multiplicative factors are functions of frequency (ω). You can, of course, solve

elastic problems in the frequency domain, too. Only there’s not much point in it, since

in that case W and X are already simple multiplication operators in the time domain

(Wijkl = δik δjl and Xijkl = Λijkl), and so are unaffected by the Fourier transform.

So in the Fourier transform domain for a linear, anelastic material, where W̃ and X̃

are multiplication tensors (the ˜ denotes Fourier transform), you can invert W̃ to obtain

a relation of the form:

τ̃ij =
∑

k,l

Λ̃ijkl ε̃kl, (5.32)

where τ̃ij and ε̃kl are the Fourier transforms of stress and strain, and Λ̃ = W̃−1X̃ depends

on ω and is, in general, complex.

Equation 5.32 looks like the elastic stress/strain relation. In fact, for isotropic mate-

rials, you can write:

Λ̃ijkl = 2µ̃δik δjl + λ̃δij δkl

just as in the elastic case, but where µ̃ and λ̃ are now complex functions of ω.

The result of all this is that the formalism used to solve elastic problems can also be

applied to anelastic problems. We just replace µ and λ by functions of ω, and invert the

solution from the frequency domain where the equations are solved, to the time domain.

We can make some general remarks about the functions µ̃(ω) and λ̃(ω). For example,

one issue is whether there is dissipation of shear energy or of compressional energy. In

the first case (shear dissipation), we want the relation between P and ∆V /dV to be
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unaffected by anelasticity. In other words, no dissipation of compressional energy implies

that the volume responds instantaneously to any applied pressure. That means, we want

K̃ = bulk modulus =
3λ̃+ 2µ̃

3
(5.33)

to be independent of ω. This must hold, even though both µ̃ and λ̃ are likely to be

complex functions of ω.

In the second case (compressive dissipation), K̃ is frequency dependent, but µ̃ is not.

That’s because µ̃ describes shear — after all, µ̃ is responsible for the off-diagonal terms

in the stress tensor. So, λ̃ depends on frequency while µ̃ does not.

For the earth, compressional dissipation is believed to be much less important than

shear dissipation — although there is some evidence from free oscillation observations

that suggests there may be a small amount of compressional dissipation. Here, we will

only consider shear dissipation.

So, what do people use for µ̃ and λ̃ in the shear dissipation case? It depends on

whether they are interested in short-period or long-period behavior. We’ll be more in-

terested in long-period phenomena, but first we briefly consider:

5.7.3 Short-period behavior

This is relevant to seismic waves. In the seismic regime, the effects of anelasticity are rel-

atively weak. So, µ̃ and λ̃ depend only slightly on frequency. In this case, the frequency-

dependent parts of µ̃ and λ̃ are described with a parameter Q. Q is defined in seismology

much as it is defined in electrical engineering. If you have a wave propagating through

the medium, then
2π

Q
≡ energy lost per cycle of the wave

peak energy in the wave
. (5.34)

Q may depend on the frequency of the wave. For an elastic material, Q = ∞ (a “high

quality” material).

Seismologists start by trying to find Q from observations, without worrying about

the relationship between µ̃ and Q, or between λ̃ and Q. They do this by observing the

attenuation of body or surface waves as those waves travel through the earth. They
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can also find Q by observing free oscillations, since the same parameter, Q, can also be

related to the free oscillation decay times. (A free oscillation — or normal mode of the

earth — is a standing wave, and as such can be envisioned as the sum of traveling waves,

each of which loses energy according to Equation 5.34.)

By finding Q(ω), seismologists are learning about the imaginary parts of µ̃ and λ̃,

because it is the imaginary part of a modulus that is responsible for energy dissipation.

Once they know the imaginary part, they can infer information about the real part using

what’s called the “Kramers-Kronig relation,” which follows from the simple and obvious

requirement that a seismic wave can’t arrive at a point until after the wave has been

generated. The general form of the real part depends on what the functional form for

Q(ω) is. For example, most seismic data are reasonably consistent with a frequency-

independent Q. In that case, µ̃ turns out to be:

µ̃(ω) = µ0

[
1 +

[
2

π
ln
(
ω

ωm

)
+ i
]

1

Q

]
(5.35)

where µ̃0, ωm and Q are all constants. (Equation 5.35 is actually only an approximation

valid for large Q. There are an infinite number of possible functions µ̃(ω) which give a

frequency independent Q. But they all reduce to Equation 5.35 for large Q.)

There are, however, theoretical reasons for believing that there might be a slight

variation of Q with frequency, usually parameterized as

Q(ω) = Q0

(
ω

ωm

)α
(5.36)

where Q0, ωm, and α are constants. In that case (again, an approximation for large Q):

µ̃(ω) = µ0

(
1 +

{
cot

(
απ

2

) [
1−

(
ωm
ω

)α]
+ i
(
ωm
ω

)α} 1

Q0

)
. (5.37)

More complicated functional forms for Q(ω) lead to more complicated relations be-

tween µ̃(ω) and Q.

People rarely use anything more complicated than Equation 5.36 in the seismic regime.

It has even been used successfully in explaining variations in the earth’s rotation at

periods longer than one year (specifically, the 14 month Chandler wobble, that we’ll
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talk about later). The best estimates for α that can reconcile the rotation and seismic

observations seem to be on the order of 0.1, with a large uncertainty.

Note that µ̃(ω) has both real and imaginary parts in Equations (5.35) and (5.37).

The imaginary part represents energy dissipation (it causes the stress to be out-of-phase

with the strain). The ω-dependent real part represents dispersion. That is, waves with

different frequencies travel at different speeds. This causes a seismic pulse to spread out

as it travels.

5.7.4 Long-Period behavior

At periods of hundreds of years and longer, people have been reasonably successful at

explaining observations using a “Maxwell solid” model.

5.7.4.1 Maxwell solid

The best way to think of a Maxwell solid is in terms of a spring and a dashpot in series

as in Figure 5.21. The spring is elastic with spring constant 2µ (the “2” is used here so

T

2

µ

η

T2

Figure 5.21:

that this µ will end up corresponding to the Lamé parameter, µ), and the dashpot has

viscosity 2η.

Suppose that at time t = 0 you apply the outward force T to each side, as shown. The

configuration immediately responds elastically — through stretching of the spring. You

continue to hold the two ends apart so that the total stretched length doesn’t change.

Gradually the dashpot pulls apart and the spring closes, thus relieving the stress. In the
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limit t → ∞ there is no stress (you no longer have to pull to keep the thing stretched)

and the spring is closed.

That’s a Maxwell solid. The idea, when generalized to a three-dimensional solid, is

that the solid initially responds “elastically” to the sudden application of an external

force. Shear stresses are initially set up in the material. But, gradually, the material

inside the solid flows until the shear stresses are relieved. At t = ∞, the only stress

remaining is hydrostatic pressure (this assumes we are talking about shear anelasticity,

rather than compressional anelasticity).

Let’s construct a mathematical model for this behavior. We start with the spring and

dashpot shown in Figure 5.21. Define:

ES = amount the spring has stretched

ED = amount the dashpot has stretched

E = ES + ED = amount the total configuration has stretched.

Let T be the force applied to each end, as shown. In general, T and the E’s are functions

of time. How are they related? Across the spring:

T = (2µ)ES. (2µ = spring constant)

Taking d/dt of this gives:

Ṫ = 2µĖS. (5.38)

Across the dashpot: (where the force = viscosity × d/dt (stretching)):

T = 2ηĖD. (5.39)

Add Equations 5.38 and 5.39 to get:

Ṫ

2µ
+
T

2η
= ĖS + ĖD = Ė.

Or:

2µĖ = Ṫ +
1

τ0
T (5.40)
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where τ0 = η/µ is called the “relaxation time.”

Note that if there is no dashpot, then η = viscosity = ∞ (infinite viscosity ⇔ elastic

material), so 1/τ0 = 0 and 2µĖ = Ṫ . Or, integrating: 2µE = T , which is the spring

equation. So, Equation 5.40 has the right elastic limit.

Why is τ0 called the relaxation time? Suppose we suddenly stretch the configuration

by an amount E0 at time t = 0, and we continue to hold the configuration apart so that

it remains stretched by E0 at all later times. A plot of E versus time is a step function,

as shown in Figure 5.22. Let’s solve Equation 5.40 to find the force T as a function of

E

t

0E

Figure 5.22:

time.

We know that T must be 0 at times t < 0. What is T right at t = 0, immediately

after we apply the displacement E0? To find the answer, we note that Equation 5.40 at

t = 0 implies that

2µ lim
dt→0

E(t = 0)− E(t = −dt)
dt

= lim
dt→0

T (t = 0)− T (t = −dt)
dt

+
1

τ0
T (t = 0).

Or, since T (t = −dt) = E(t = −dt) = 0, and E(t = 0) = E0:

2µ lim
dt→0

E0

dt
= lim

dt→0

T (t = 0)

dt
+

1

τ0

T (t = 0)

T must always be finite. Therefore,

lim
dt→0

2µE0 − T (t = 0)

dt
=

1

τ0
T (t = 0)
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must be finite. That means that

T (t = 0) = 2µE0.

Physically, what happens is that at infinitely short times you see the spring but not the

dashpot. And, for the spring alone, T (0) = 2µE0.

So, for our example:

T = 2µE0 for t = 0

Ṫ +
1

τ0
T = 0 for t > 0

(since Ė = 0 for t > 0). The solution is

T = (2µE0)e−t/τ0 .

So, the force decays exponentially to 0 as t→∞, with time constant τ0.

A Maxwell solid is a special case of a visco-elastic solid. Visco-elastic solids can all be

represented by springs and dashpots in series and/or in parallel. Because of the presence

of dashpots, visco-elastic solids are described by a viscosity parameter (possibly more

than one, if there are two or more dashpots with different viscosities). Two examples

besides a Maxwell solid which are sometimes used in geophysics:

5.7.4.2 Kelvin-Voigt solid

A Kelvin-Voigt solid is a spring and dashpot in parallel, as shown in Figure 5.23. If you

T T

Figure 5.23:

turn on the force T at t = 0, and leave it on, the response is
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1. initially, no stretching;

2. gradually the dashpot opens and the force gets transferred to the spring.

At t→∞, the behavior is controlled only by the spring, and the relation between T and

the amount of stretching is given by the elastic relation for the spring.

5.7.4.3 Standard Linear solid

TT

Figure 5.24:

A standard linear solid is a spring in series with a Kelvin-Voigt element, as shown

in Figure 5.24. This is a combination of a Maxwell solid and a Kelvin-Voigt solid. The

initial response is elastic, and is controlled by the spring on the left in Figure 5.24. The

configuration relaxes because of the dashpot. The t =∞ response is controlled by both

springs.

5.7.4.4 Three-dimensional Maxwell solid rheology

Consider, again, a Maxwell solid. How do we extend the result Equation 5.40, that we

derived for a spring and dashpot, to a three-dimensional solid? We assume there is no

dissipation of compressional energy, so that the elastic result

−1

3

∑

k

τkk = −
(

2µ+ 3λ

3

)∑

k

εkk (5.41)

holds, where µ and λ are the elastic Lamé parameters. (Note that we are working in the

time domain at the moment, not the frequency domain.) We assume that the Maxwell
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rheology applies only to the dissipation of shear energy. The shear stress is described by

the deviatoric stress, which is
↔
τ minus the pressure terms:

δτij = τij −
1

3

∑

k

τkkδij. (5.42)

The shear strain is similarly defined as
↔
ε minus the volume terms:

δεij = εij −
1

3

∑

k

εkkδij. (5.43)

To describe a Maxwell solid rheology, we replace T and E in Equation 5.40 with δτij

and δεij, respectively, to obtain:

2µ

[
ε̇ij −

1

3

∑

k

ε̇kkδij

]
= τ̇ij −

1

3

∑

k

τ̇kkδij +
µ

η

[
τij −

1

3

∑

k

τkkδij

]
. (5.44)

I claim that µ in Equation 5.44 is the elastic Lamé parameter, which is why I called it

‘µ’ originally. To see that, suppose we have an elastic material, where η = ∞. Then,

Equation 5.44 relates ε̇ to τ̇ (no τ terms). Integrating over time gives:

2µ

[
εij −

1

3

∑

k

εkkδij

]
= τij −

1

3

∑

k

τkkδij

which is the result for an elastic solid so long as µ = elastic Lamé parameter.

Now, go back to Equation 5.44, for η 6=∞. Use Equation 5.41 to remove the τkk term

in Equation 5.44, and use the derivative with respect to time (d/dt) of Equation 5.41 to

remove the τ̇kk term. We find:

τ̇ij +
µ

η
τij = 2µε̇ij + λ

∑

k

ε̇kkδij −
µ

η

(
2µ+ 3λ

3

)∑

k

εkkδij. (5.45)

Except for the last term on each side, this equation is the time derivative of the elastic

stress/strain relation.

Equation 5.45 is the anelastic stress/strain relation in the time domain. It is of the

form
∑

k,l

Wijkl τkl =
∑

kl

Xijklεkl

where W and X include time derivatives. What happens in the frequency domain?

Suppose we replace d/dt with iω. The left hand side is then (iω + µ/η)τ̃ij. We divide
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each side by (iω + µ/η), to obtain:

τ̃ij = 2µ̃ε̃ij + λ̃
∑

k

ε̃kkδij (5.46)

where

µ̃ = µ




iω

iω +
µ

η




λ̃ = λ




iω +
µ

η

(
2µ

3λ
+ 1

)

iω +
µ

η


 .

So, in the frequency domain the stress/strain relation looks like the elastic result, except

that µ̃ and λ̃ are functions of ω, and are complex. Note that in the elastic limit (where

η →∞), µ̃→ µ and λ̃→ λ. Also: at high frequencies (ω � (µ/η) = (1/τ0)), µ̃→ µ and

λ̃ → λ, which is the elastic limit. And at low frequencies (ω � (µ/η) = (1/τ0), µ̃ → 0

and λ̃→ (2µ+ 3λ)/3 = K. So, at long periods the material behaves as a fluid.

The Maxwell rheology has been especially useful for modeling postglacial rebound,

as we shall see. To model the response of a Maxwell earth to any externally applied

force, you work in the frequency domain (so you must transform the applied force to the

frequency domain). You solve the equations, which are:

1. the stress/strain relation Equation 5.46 ; and

2. the conservation of momentum equation (−ρω2s = ∇· ↔τ + f) and the equation

relating
↔
ε to derivatives of s, Equation 5.15, both of which are unaffected by

anelasticity.

Once you obtain a solution for s, you transform it to the time domain.

It turns out that for many applications, including for postglacial rebound, you work

in the Laplace transform domain rather than the frequency domain. That means in all

the above equations, you replace (iω) with s, the Laplace transform variable. But, the

frequency domain is always ok. It’s just that sometimes the Laplace transform simplifies

the algebra.
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Chapter 6

Interpretation of Observed Gravity

Anomalies

6.1 Surface Gravity Anomalies

As discussed in Chapter 4, a plot of the geoid provides a good representation of the long

wavelength features in the earth’s gravity field. But, it’s usually not the best way to

represent short wavelength features, since short wavelengths are less prominent in the

geoid. Instead, short wavelength features are more clearly evident in maps of gravitational

acceleration. Although the gravitational acceleration, as a function of position, can be

inferred from satellite ranging data (see Equation 4.35 and the discussion in Section 4.4),

those data do not resolve short wavelengths well. The short wavelength terms are best

determined from surface gravity observations.

But, there’s a complication. The reason geophysicists are interested in gravity, is

because it allows them to learn about the earth’s internal density distribution. But

observed gravity also depends on the radial coordinate of the instrument. For example,

if the gravimeter is further from the center of the earth, such as on top of a mountain, g

is smaller.

So, to use observed gravity to learn about the earth’s interior, you must first remove

the effects of the earth’s non-spherical surface. In principle, this means you should

177
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correct observed gravity for the topography (the elevation above the geoid) and for the

geoid shape (the difference between the geoid and the mean spherical surface). But,

at short wavelengths — say less than 1000 km — you don’t need to correct for the

geoid. That’s because the geoid is smooth, with little power at those wavelengths. So

if you only care about interpreting gravity over regions of a thousand km and smaller

(and for regions much larger than that you would probably be representing gravity using

geoid anomalies instead of surface gravity), then geoid anomalies are roughly the same

over the entire region, and so by ignoring the geoid corrections you are not introducing

any important relative errors across the region. And, it’s only the relative errors which

are apt to affect your interpretation. Except that people usually do correct for the P2

component of the geoid: the ellipsoidal component. It’s true that this component has a

very long wavelength. But, it also has an enormous amplitude. So, if you don’t remove

it, your surface gravity observations could well show a linear decrease from North to

South. You remove this component by subtracting the International Gravity Formula

(see Equation 4.31) from your data. This is equivalent to removing the effects of the

centrifugal force and of the P2 internal density distribution.

The data should be corrected for topography, however, because topography can have

significant power at short wavelengths. Let h(θ, φ) be the elevation of the surface at

(θ, φ). To remove the effects of h you construct what are called Free Air anomalies:

gFA = (gobs − γ0)− h∂rg

= (gobs − γ0) + h
(

2

a
gobs

)

≈ (gobs − γ0) + h[in m]× [0.3086 mgal/m] (6.1)

where γ0 is the International Gravity Formula. Equation 6.1 reduces the observed surface

gravity to a common spherical surface (except, as described above, for the effects of the

height of the geoid above the ellipsoid). This gFA I denoted as ∆g back in Section 4.3.2.

The free air anomaly, gFA, can be interpreted in terms of the earth’s density distribu-

tion. Think of gFA as the acceleration you would observe at a surface of constant elevation

outside the earth: the surface in Figure 6.1, for example. That’s not really quite what it
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geoid

constant elevation surface outside the earth

Figure 6.1:

is. It’s really the acceleration you would observe on the geoid (except for the effects of

subtracting γ0 in Equation 6.1); except that, because the geoid is likely to be below the

earth’s surface, when we extrapolate from the surface down to the geoid we are ignoring

the mass that we are extrapolating through (i.e. we are assuming that ∂rg = −2g/a).

This is the same sort of conceptual problem we had to deal with when we defined the

geoid. In fact, gFA does turn out to equal g on an external level surface, plus a constant.

So, think of it this way, if you prefer.

gFA is affected by the direct attraction of topographic mass. For example, gFA will

be large where there is a mountain, because the mountain has mass. You would have to

classify this as an effect due to the earth’s internal density (as opposed to the free air

correction, (2g/a)h, which is an effect due to the position of the instrument), but it’s not

an interesting effect. There are better ways to learn about the topography than by using

gravity: leveling, for example. Gravity is most useful because it can provide information

about density inside the earth.

So, to learn about the interior of the earth, it is useful to subtract off the direct

attraction of the underlying topography. There’s a crude way of doing this that almost all

geophysicists and most geodesists use. Assume the topography is smooth, in some sense.

See Figure 6.2. Then, if you are at elevation h when you make your measurement, you
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approximate all the mass above the geoid as an infinite slab of thickness h. You compute

h

slab of
thickness

instrumenttopography

h

geoid

Figure 6.2:

g due to this imaginary slab. Earlier, in Section 3.2.2, we found that the downward

gravitational acceleration caused by a homogeneous, infinitesimally thin, infinite plane

with surface density σ, is 2πGσ. This result does not depend on how far you are from

the plane. So, g from our slab is:

∫ h

0
2πG(ρ dz) = 2πGρh

where ρ is the density of the slab. (Think of the slab as composed of lots of thin planes,

each with σ = ρ dz, and sum over the planes.) This is the extra downward attraction

due to the topographic mass, assuming the infinite slab approximation is ok. To learn

about the earth’s interior, you want to subtract this slab contribution from gFA. In this

way you construct Bouguer anomalies:

gB = gFA − 2πGρh

= (gobs − γ0) +
(

2

a
gobs − 2πGρ

)
h.

For typical crustal rocks, ρ is often taken to be ρ = 2.67 gm/cm3. Then, 2πGρ =

0.1118 mgal/m, which is about 1/3 of the free air (2gobs/a) correction.

So, by using gobs, together with h from leveling, we have a result, gB, that can be

used to learn about the earth’s interior. Sometimes geodesists use a better method of

subtracting the effects of topographic density than simply using an infinite slab. They

break up the surrounding region into “templates.” See Figure 6.3. They find the mean
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a template

instrument

Figure 6.3:

elevation (and density) of each template, compute the gravitational effect from the mass

in each template, and sum over all templates. There are standard tables they use to

look up the gravitational effect from a template — given the density and elevation.

Geophysicists, though, almost always use the cruder Bouguer anomalies.

I’ve described what to do about topography when you’re measuring g over the con-

tinents. The Bouguer anomaly essentially shaves off all mass down to the geoid. But,

what do you do when you’re observing g over the oceans? You must remove the effects of

sea floor topography, and the effects of having low density water beneath you instead of

higher density rocks. If these latter effects are not removed, then gravity anomalies across

an ocean-continent boundary have a discontinuity at the the shoreline, as illustrated in

Figure 6.4.

To construct Bouguer anomalies over the oceans, you imagine replacing the water

with crustal rock. Suppose you observe g at sea level, where the ocean has depth H.

You approximate the underlying ocean as an infinite water slab of thickness H. The

gravitational acceleration toward the slab is 2πGρwH where ρw = density of sea water. If
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Figure 6.4:

you replace the slab with crustal rocks of density ρ, the new slab produces a gravitational

acceleration of 2πGρH. So, to construct Bouguer anomalies over the ocean, you add

2πG(ρ− ρw)H to gFA to obtain:

gB = gFA + 2πG (ρ− ρw)H.

Note that over the oceans: gFA = gobs − γ0. No free air correction is required, because,

except for dynamic topography (which is small), the oceans have zero elevation.

6.2 Isostasy

Suppose you measure g over the earth’s surface, and construct Bouguer anomalies. You

are now ready to learn about the earth’s interior. But, you find a strange thing. At

short horizontal wavelengths — say a few 10’s of km or shorter — everything looks

like you’d expect it. That is, there is little correlation between your gB results and the

topography. The Bouguer anomalies do a pretty good job of removing the topography.

But, at wavelengths of 100 km and longer, the Bouguer anomalies look like the inverse of

the topography. In fact, at these wavelengths the free air anomalies show little correlation

with the topography.

This result was first discovered around 1850 by geodesists surveying in the Himalayas.

Only they first noticed it in observations of the direction of gravity, rather than the
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amplitude. The direction is measured by finding the angle between a plumb bob and

vectors to stars. The geodesists expected the plumb bob to be attracted by the Himalayas.

But, they found the observed angle didn’t change as they moved closer to the mountains.

6.2.1 Airy compensation

These results don’t, of course, mean that the topographic mass doesn’t affect gravity

Instead, they demonstrate that there is material with anomalously low density beneath

topography, with gravitational effects that tend to cancel the effects of the topography

at long wavelengths. This is the theory of isostasy. It was proposed soon after the

Himalayan results were found.

One version of this idea is that mountains have roots. See Figure 6.5. The crust is

mountain

crust

mantle

Figure 6.5:

lighter than the mantle. A mountain has excess mass above the geoid. This is balanced

by the light crust extending down further into the mantle, so that the total mass in a

vertical column is the same, whether the column is beneath the mountain or not. The

result is that the gravitational effect from the root will nearly cancel the effect from

the mountain in gFA. For example, suppose we approximate the root as an infinite slab

with negative density = (ρcrust − ρmantle). Because of the compensation, the mass/area

in the root is the negative of the mass/area in the infinite slab used to approximate the
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topography. So, since g from an infinite slab is independent of the distance to the slab,

the effects of the two slabs cancel.

To find the size of a root, note from Figure 6.6 that equal masses in vertical columns

implies that:

c
ρ

h

D

ρ
m

Figure 6.6:

hρc = D(ρm − ρc).

Or:

D = h

(
ρc

ρm − ρc

)
.

(Note: crustal thicknesses are usually much larger than both h and D, contrary to what

is shown in Figure 6.6.) Typical crustal densities are 2–3 gm/cm3. The density contrast

between crust and mantle is typically: ρm− ρc ∼= 0.4–0.7 gm/cm3. Using these numbers,

we can infer that D is 3–8 times h. So, the roots are large.

This model of isostasy is called Airy compensation, after a mathematician names Airy,

who proposed it. The idea, physically, is that

1. the mantle is fluid over long time periods

2. the crust breaks up under long wavelength topographic loading, and the resulting

blocks float on the mantle like icebergs float on water.

As we’ll see, number 2 is an over-simplified idea.

If this idea of isostasy is valid (that is, if there is equal mass in all vertical columns),

then there should be a small correlation between gFA and topography. The root and
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the mountain have opposite masses, but they are not really infinite slabs, and so their

gravitational effects depend on how far away they are. Thus, the contributions will not

exactly cancel. By doing the calculations more exactly, and comparing the results with

observations, people have been able to estimate the thickness of the crust.

6.2.2 Pratt compensation

Another type of isostasy, Pratt compensation, was proposed by Pratt — the person who

had noticed the discrepancy in the Himalayan data — a couple years after Airy came

up with his explanation. Pratt agreed that there was equal mass in equal columns. But,

he argued that this was achieved by changing the density in a column, rather than by

extending or contracting the bottom of the column. In this theory, mountains would be

supported by a lower density crust, rather than by a thickened crust. See Figure 6.7. If h

h
ρ

c c
ρ ρH

h

mantle

crust

Figure 6.7:

= topography, H = crustal thickness in the absence of topography, ρc = normal crustal

density, and ρh = crustal density beneath topography, then equal mass in equal columns

gives: Hρc = (H + h)ρh. So

ρh =
(

H

H + h

)
ρc.

Again, this model predicts little correlation between gFA and topography, since to lowest

order you approximate the underlying column as an infinite slab with mass/area equal to

the total mass/area of the column. And each column has the same mass/area no matter

what h is, so that there is no spatial variation of gFA. Of course the underlying column
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is not an infinite slab, and so there will be some correlation between h and gFA. Again,

this can be used to find the depth to the crust/mantle boundary.

A more general version of Pratt compensation would not require ρ to be constant

in a vertical column. All you need specify is the total mass in a vertical column. How

you distribute the mass vertically is up to you. Then ρh and ρc in ρh = ( H
H+h

)ρc are the

average densities beneath the mountain and the non-mountainous surface.

6.2.3 Airy versus Pratt

Which of these models (Airy or Pratt) is correct? Pratt compensation might be valid if

the topography were the result of thermal expansion or contraction in the crust or upper

mantle. The Airy model is probably valid if the topography can be viewed as an applied

load on the earth.

People have used both models to estimate the thickness of the crust (by correlating

the observed g with topography). They find, for both models, crustal thicknesses of about

50 km under land and of about 10 km under oceans. These results are consistent with

seismic observations of the crustal thickness. The crust/mantle boundary is a chemical

boundary (different materials on different sides of the boundary) and so represents a

discontinuity in material properties. Seismic waves are reflected from the boundary. (The

boundary is known to seismologists as the Moho, short for the Mohorovičić discontinuity.)

By comparing the arrival times of waves reflected from the boundary with the time of

the earthquake, seismologists can infer the boundary depth. They obtain depths of 30–

60 km under the continents, and 5–15 km under the oceans. Furthermore, the Moho

depths generally show that the crust is thicker under mountainous regions, which tends

to support Airy over Pratt in those regions.

Why, then, don’t you see the effects of isostasy at short wavelengths (10’s of km and

shorter)? At those wavelengths the topographic signal is present in gFA, but not in gB.

Is it because isostasy is not operative at short wavelengths? Perhaps short wavelength

loads don’t break up the crust? The answer is: “yes.” In fact, we’ll see later that even

long wavelength loads don’t actually break up the crust. But, there’s more to the story
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than this. Even if the crust did break up under short wavelength loads, there would still

be topographic effects evident in gFA. To understand why, let’s try to do a better job of

finding the effects of topography and its compensation on gFA than simply using infinite

slabs.

6.3 A Better Model for Airy Compensation Effects

on Gravity

Consider, first, Airy compensation. Suppose, for simplicity, that the earth is flat and

symmetric in the êy-direction, so that the topography is a function only of x: h = h(x).

Suppose h(x) = h0e
ikx where h0 and k are constants (k = 2π/wavelength). (Topography

is not a complex-valued function, of course. But, imagine we have expanded h(x) into

a complex Fourier series, and that here we are considering just one term in that series.)

Assume k ≥ 0. For perfect compensation, h(x) is supported by a root of thickness

D(x) =

(
ρc

ρm − ρc

)
h(x) =

(
ρc

ρm − ρc

)
h0e

ikx.

Let H = crustal thickness. Assume that |h| � H and |D| � H. See Figure 6.8. Then,

z

x

c

m
ρ

ρ

e

e

D

h

H

root

Figure 6.8:

we approximate the topography with a surface mass σ = ρch(x) at z = 0. And, we

approximate the root as a surface mass σ = (ρc − ρm)D(x) = −ρch(x) at z = −H.
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Let’s find a better approximation to g from these surface masses, than the infinite slab

approximation.

Suppose we are trying to find g at the point P shown in Figure 6.9, due to the surface

mass σ(x′). Suppose P is located at (x, z = a), and that the surface mass is on the plane

z = 0 (so the surface mass is a distance a below P ). Break the surface into thin strips of

P

z

x

e

e

xx’ - x

ad

Odx’

θ

σ(x’)

Figure 6.9:

width dx′, as shown. Each strip looks like an infinite line extending in the êy direction,

with constant mass/length = λ = σ(x′) dx′. The distance between P and the line is

d =
√
a2 + (x′ − x)2. From Section 3.2.3, we know that g due to the line has magnitude

gline =
2Gλ

d
=

2Gσ(x′) dx′√
a2 + (x′ − x)2

,

and is directed from P towards dx′. We only want the component of acceleration in

the −êz direction (this direction is downwards) since, to first order, only this component

affects |g|. So, the −êz contribution to g from the line is

2Gσ(x′) dx′√
a2 + (x′ − x)2

cos θ =
2Gσ(x′) dx′ a

a2 + (x′ − x)2

where cos θ = a/d.

We add up (i.e. integrate) over all lines to get the total contribution from the plane:

g(x, a) =
∫ ∞

−∞

2Gaσ(x′) dx′

a2 + (x′ − x)2 (6.2)
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where g(x, a) is the −êz component of g at the point P . Suppose σ(x′) = σ0e
ikx′. Then

we can do the integral in Equation 6.2 to get

g(x, a) = 2Gπσ0e
−kaeikx (6.3)

(for k < 0 we get the same result, except that −ka is replaced with −|k|a).

Return, now, to our original problem of finding g from the topography and its com-

pensation. Suppose we want to find g at any elevation, z, above the earth’s outer surface

(z = 0). (Gravity observations are made only at z = 0, but we want to keep z ≥ 0

arbitrary at this time, because it will be useful when we compute the geoid, later.) We

use Equation 6.3 for each of the two planes. One plane has σ0 = ρch0 and a = z. The

other has σ0 = −ρch0 and a = H + z. Using Equation 6.3 for each plane, and adding to

get the total g, gives:

g(x, z) = 2Gπρch0e
ikx
[
1− e−kH

]
e−kz. (6.4)

g(x, z = 0) from Equation 6.4 is our prediction for gFA.

Suppose the horizontal wavelength of the topography is large, so that k is small.

Specifically, suppose that kH � 1, so that the wavelength � crustal thickness. Then

e−kH ≈ 1, and so g(x, z = 0) = 0. But, suppose kH � 1, so that the wavelength is �
crustal thickness. Then e−kH → 0, so that g(x, z = 0)→ 2πGρch(x), which is the infinite

slab result for the topography alone.

So for long wavelengths there is little correlation between gFA and topography. And

for short wavelengths there is little correlation between the Bouguer anomalies and to-

pography. “Short” and “long” mean compared with the crustal thickness. In fact, the

way geophysicists learn about the crustal thickness is by comparing Equation 6.4 for

gz(x, z = 0) (or its two-dimensional equivalent gz(x, y, z = 0)) with observations of gFA.

What’s happening here is that short wavelength gravity variations on a plane die

away rapidly with distance from the plane. The decay distance is about equal to a

horizontal wavelength. So, if the crustal thickness is larger than a horizontal wavelength,

the gravitational signal from the root will not be seen at the surface. But, if the crustal
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thickness is much less than a wavelength, the signal from the root will not have decayed

much, and so will cancel the signal from the topography.

6.4 A Better Model for Pratt Compensation

Effects on Gravity

Let’s go through a similar derivation for Pratt compensation to see how it differs from

Airy compensation.

Suppose the surface topography is h = h(x) = h0e
ikx, where k ≥ 0. Then, g at (x, z)

due to the surface topography is

2πGρch0e
ikxe−kz (6.5)

as in the Airy case.

The Pratt model proposes that the topography is supported by density variations in

the crust. Suppose the crust fills the region −H < z′ < 0 (see Figure 6.10). Let ∆ρ(x′, z′)

ρ = ρ  + ∆ ρc
H

Figure 6.10:

be the crustal density anomaly at the location (x′, z′), so that the total density inside

the crust is ρ(x′, z′) = ρc + ∆ρ(x′, z′). (We used ρc in Equation 6.5, instead of ρ, because

h0∆ρ is 2nd order in small quantities.) We assume that there is no density anomaly

below the crust (z′ < −H).

When we introduced Pratt compensation above, we assumed that ∆ρ(x′, z′) was inde-

pendent of z′. That is, we assumed that the entire crustal column beneath a topographic
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feature has a uniform density anomaly. We defined ρc + ∆ρ(x′, z′) ≡ ρh, and then con-

cluded that

ρh =
(

H

H + h

)
ρc ≈ ρc −

h

H
ρc ⇒

∆ρ = −h0

H
ρc. (6.6)

I mentioned that you could generalize Pratt compensation to cases where the density

anomaly depends on z′, with the result that

ρh ≈ ρc −
h

H
ρc (6.7)

is valid in an average sense. I want to consider that more general case here. We don’t

really need to do that to address the topic of this section: finding something better than

an infinite slab to approximate the gravity anomaly from Pratt compensation. But, the

results of the more general case will be useful, later, in applications.

To have equal masses in all columns, ∆ρ must satisfy:

∫ h(x)

−H
(ρc + ∆ρ(x, z′)) dz′

︸ ︷︷ ︸
mass in a column

= Hρc︸ ︷︷ ︸
mass in a

column with
no topography

for all x (the value of x defines the column). Or:

∫ 0

−H
∆ρ(x, z′) dz′ = −ρch0e

ikx (6.8)

for all x. (For the upper limit of the integral we have used 0 instead of h, because ∆ρ

and h are both 1st order, implying that the difference between using 0 and using h as

the limit, is 2nd order.) Since Equation 6.8 must hold for all x, we expect ∆ρ(x, z ′) to

be proportional to eikx, so that:

∆ρ(x, z′) = δρ(z′)eikx.

With this definition of δρ, Equation 6.8 implies that:

∫ 0

−H
δρ(z′) dz′ = −ρch0. (6.9)
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Note that for δρ(z′) = δρ = constant, Equation 6.9 reduces to δρ = −h0

H
ρc, as in Equa-

tion 6.6.

So, Equation 6.9 is a more general version of Pratt compensation, valid for depth-

dependent density anomalies. What effect does the anomalous density ∆ρ(x, z ′) =

δρ(z′)eikx have on g? Think of δρ(z′)eikx as spread over a lot of thin horizontal planes

of thickness dz′, each with surface density σ(x′, z′) = δρ(z′)eikx dz′. The plane at z′ is a

distance z− z′ from the field point (note that z′ < 0). From Equation 6.3, we know that

g(x, z) caused by the surface density on that plane is:

2Gπekz
′
eikxδρ(z′) dz′ e−kz.

We add up the contributions from all planes, from z′ = −H to z′ = 0. We also add the

effect, Equation 6.5, from the surface topography. We find that the total g is:

g(x, z) = 2πG
[
ρch0 +

∫ 0

−H
δρ(z′)ekz

′
dz′
]
eikxe−kz.

This is the result for generalized Pratt compensation.

6.4.1 Remarks

• Suppose the wavelength � crustal thickness. Then kH � 1, so that |kz ′| � 1 for

z′ between −H and 0. Then, crudely, ekz
′ → 1. So

g → 2πG
(
ρch0 +

∫ 0

−H
δρ(z′) dz′

)
eikxe−kz = 0

since the integral here is equal to−ρch0 for perfect compensation (see Equation 6.9).

So, there is no correlation between gFA and topography in this long wavelength limit.

• Suppose the wavelength is � crustal thickness. Then kH � 1, so that ekz
′ ≈ 0

except for z′ close to 0. So, as long as δρ(z′) is not all concentrated right near the

surface (z′ = 0), the integral
∫ 0
−Hδρ(z′)ekz

′
dz′ is small. So, g(z = 0) → 2πGρch0,

which is the infinite slab result = the Bouguer correction. So, short wavelength

topography is not correlated with gB.
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• Consider the usual Pratt compensation, where δρ = constant = − h0

H
ρc. Then

∫ 0

−H
δρ(z′)ekz

′
dz′ = −h0

H
ρc

(
1− e−kH

k

)
.

So:

g(x, z) = 2πGρch0

[
1− 1− e−kH

kH

]
eikxe−kz. (6.10)

At long wavelengths (kH � 1), let’s expand Equation 6.10 to 1st order in kH,

rather than to 0th order (it vanishes to 0th order, as we’ve seen).

1− e−kH
kH

∼=
1−

[
1− kH +

(kH)2

2

]

kH
= 1− kH

2
.

Thus, we obtain the first order Pratt result:

g(z = 0) ≈ 2πGρch

(
kH

2

)
. (6.11)

How does the first order Pratt result (Equation 6.11) differ from the 1st order Airy

result?

First Order Airy:

g(z = 0) = 2πGρch
[
1− e−kH

]

≈ 2πGρch(kH).

So, to first order at long wavelengths, the Pratt g is half the Airy g. That does make

some sense. It sort of implies that the compensation is in the middle of the crust for

the Pratt case, rather than at the bottom. And, after all, the Pratt compensation is

distributed uniformly throughout the entire crust, so that the average compensation

is in the middle.

6.5 Geoid anomalies

Isostasy should show up somehow in the geoid, too. After all, the geoid is just another

way to represent the gravity field. If we knew how the different isostasy models affected
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the geoid, we could maybe compare the geoid with topography and so learn about crustal

thicknesses, etc. But, why bother? Useful information on isostasy will only appear at

wavelengths of less than a few thousand km. At longer wavelengths you start to see

effects of density anomalies deep inside the earth, that tend to mask any near-surface

isostatic signal. And, I’ve been telling you that shorter wavelength features are more

clearly evident in gravitational acceleration maps than in the geoid.

Nevertheless, people do sometimes look at isostatic effects on the geoid, particularly

over the oceans. There aren’t many surface gravity observations over the oceans. But,

satellite altimeter data do give good results for the geoid, even at very short wavelengths.

Of course, you could always transform the geoid results to obtain gravitational acceler-

ation maps, and thus amplify the shorter wavelength terms. But there can be reasons

to work, instead, with the geoid results, given that they are the direct output of the

altimeter analysis.

What are the effects of Airy and Pratt compensation on the geoid? The reason I kept

the e−kz terms in the results above for g (rather than setting z = 0) is so that we can

answer this question. Remember that

geoid anomaly =
∆V

g

∣∣∣∣∣
surface

where ∆V is the perturbation in the potential due to the underlying topography and its

compensation. And:

∆V (z) = −
∫ z

g(z′) dz′ (6.12)

where g is the effect of the topography plus compensation on the vertical acceleration.

(The minus sign in Equation 6.12 is because we have defined g to be positive downwards:

in the negative êz-direction.) (Back in Chapter 4 we showed that (∂r∆V + 2
a
∆V )|surface =

∆g (Equation 4.32). But, the ∆g in this equation is g on the geoid; whereas the g in

Equation 6.12 is g in space, as a function of z.)

We just finished finding g(z) for different types of compensation. In all cases the z
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dependence was e−kz. So, the integral over z is − 1
k
e−kz. So:

Airy

N(x) =
2πGρch(x)H

g

[
1− e−kH
kH

]
(6.13)

Generalized Pratt

N(x) =
2πG

gk

[
ρch(x) +

(∫ 0

−H
δρ(z′)ekz

′
dz′
)
eikx

]
(6.14)

Constant density Pratt

N(x) =
2πGρch(x)H

gk2H2

[
−1 + kH + e−kH

]
(6.15)

6.5.1 One Final Remark

Suppose we are considering long wavelengths, where kH � 1. Let’s expand all three

results, above, to zero order in kH. So, use e−kH ≈ 1−kH in Equation 6.13, ekz
′ ≈ 1+kz′

in Equation 6.14, and −1 + kH + e−kH ≈ −1 + kH + 1− kH + (kH)2

2
in Equation 6.15.

Then,

Airy

N(x) ≈ 2πGρcHh(x)

g

Generalized Pratt

N(x) ≈ 2πG

kg


ρch(x) +

∫ 0

−H
δρ(z′) dz′ eikx

︸ ︷︷ ︸
These terms cancel

+k
∫ 0

−H
δρ(z′)z′ dz′ eikx




=
2πG

g

(∫ 0

−H
δρ(z′)z′ dz′

)
eikx

Constant density Pratt

N(x) ≈ πGρcHh(x)

g

All three of these results for N(x) have the same x-dependence as h(x): eikx. And, all

three are independent of k (except for the k in eikx). That has an important implication.
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It means that if you have a complicated topography — not a simple eikx — and if you

transform the topography to a sum or integral of eikx terms, the contribution to N(x)

from each term is independent of k. Or, to be more accurate, it depends on k in exactly

the same way as h0 does. So, when you add up all the contributions to N from the

different eikx terms, you find that the resulting sum has exactly the same x-dependence

as the total topography. In other words, N = constant times topography, no matter how

complicated the topography is (so long as we only include long wavelength topography).

This result does not hold for gravity. The gravity contributions from eikx depend

linearly on k (for kH � 1), so adding up the eikx contributions to g does not give

(constant) × (topography).

6.6 Lithospheric Bending

There are cases where topography is caused by thermal anomalies in the crust and upper

mantle. In these cases, some sort of Pratt isostasy is probably operable.

But, most topography is due to other causes. For example: ongoing collisions of

plates, or relics of past collisions. Or volcanic activity. Or erosion. In these cases, you

might expect Airy compensation to be at work. But, Airy compensation is too simple a

picture of what really happens. It assumes that when you put a load on the crust, the

crust breaks up. Actually, the crust bends. And, it’s not only the crust that bends. It’s

the entire lithosphere. It turns out that for loads with long wavelengths, the lithosphere

bends easily, and you get what look like roots “supporting” the topography. At short

wavelengths the lithosphere does not bend much, and so you get smaller roots. Thus, at

short wavelengths, the effects of topography on g are not fully compensated. And it’s

not just because the roots are far below the surface compared with the wavelength. But,

it’s also because the roots are small.

6.6.1 Lithosphere

Before modeling this bending, I need to define and describe the lithosphere.
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There are two ways you can subdivide the upper few hundred km or so of the earth.

You can separate it into the crust and mantle. As I’ve said, the crust/mantle boundary is

a chemical boundary, with significant density contrasts across it. The crust is less dense

than the mantle.

You can also divide the region into a lithosphere overlying an asthenosphere. See

Figure 6.11. The idea is that the lithosphere is the top layer of convection in the mantle. It

has cooled by radiating away heat into the atmosphere, and has become brittle. It behaves

like a solid even at extremely long time periods. The region beneath the lithosphere is the

asthenosphere. It is still pretty hot, and so behaves like a fluid over long time periods. The

crust is perhaps the top one-quarter to one-half of the lithosphere. Typical lithospheric

mantle

asthenosphere

lithosphere

crust

Figure 6.11:

thicknesses are maybe 50 km or greater under the continents, and probably somewhat

less than 50 km under the oceans. The density contrast between the asthenosphere and

the overlying lithosphere is not nearly as pronounced as between the crust and mantle.

But, neither is it entirely negligible. The lithosphere is denser than the asthenosphere

(the lithosphere is cooler). How can you have a denser material on top and still have

a stable configuration? You can’t. In fact, one of the most important forces driving

continental drift (maybe the most important) is the downward gravitational pull on the
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lithosphere at subduction zones.

What evidence is there of the lithosphere/asthenosphere boundary and its depth?

Well, we expect to find a boundary (or, at least a region of transition between solid and

fluid) somewhere down there. We know the earth’s outer surface is brittle — otherwise

all topography would flow away. And, we know the interior must be fluid at long time

periods. Otherwise there would be no convection. So, there must be a boundary — or

at least a transition region. Why not at the crust/mantle boundary, as assumed by Airy

compensation?

Well, seismic travel time observations show a layer of material with low shear velocity

at 100–200 km depth. Low shear velocity means µ is low, and so the region is more like

a fluid. Presumably, this depth (the 100–200 km mentioned above) is a dividing line

between brittle and less brittle material. This depth is below the Moho. In fact, the

shear velocity actually increases below the Moho. But, seismic observations sample the

earth at periods from seconds to minutes. Over thousands to millions of years, material

above this dividing line might flow. So, the lithosphere/asthenosphere boundary region

is apt to be above the 100–200 km depth.

In fact, the best way to determine the depth to the lithosphere/asthenosphere bound-

ary — or at least the depth appropriate for the time scales of mantle convection — is

with gravity and leveling observations. That’s what this section is all about.

The idea is to assume there is a brittle lithosphere over a fluid asthenosphere. Assume

the crust/mantle boundary, with its significant density contrast, is inside the lithosphere

somewhere. Maybe it is coincident with the lithosphere/asthenosphere boundary. That’s

one of the things you’d like to find out. Suppose you put a mass load on the crust.

The lithosphere bends, supported below by buoyancy forces from the asthenosphere.

You can see the bending in two ways. First, the surface around the load might show

the effects. So, by mapping the surface you might learn something about the bending.

And, when the lithosphere bends, so does the crust/mantle boundary embedded in it.

Since there is a density contrast at that boundary (the smaller density contrast at the

lithosphere/asthenosphere boundary can usually be ignored), the bending shows up in
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gravity (remember, it’s this mechanism which is replacing Airy compensation). So, by

looking at topography and gravity, you can learn about the lithospheric plate and its

thickness.

All of this is really only useful — with a few exceptions — for finding the thickness

beneath the oceans. For the continents, erosion quickly smooths out the slight topography

caused by the bending. And there can easily be significant lateral variations in density

in continental areas (due to chemical differences) which can obliterate the small part of

the gravity signal needed to find the thickness.

6.6.2 Theory of Flexure

To model the bending process described above, we need to find equations describing the

bending of thin plates under a surface load.

Suppose we have an initially horizontal plate of thickness H. The plate’s surface is

perpendicular to the êz axis, and the plate extends to infinity in the êx and êy directions.

The undeformed upper surface is at z = H/2, and the lower surface is at z = −H/2. The

plate is homogeneous (uniform thickness and material properties). See Figure 6.12.

z = - H / 2

z = 0

z =  H / 2

x

zH

Figure 6.12:

Suppose we apply pressure loads on the upper and lower surfaces of the plate: Q1(x)

above and Q2(x) below, see Figure 6.13.

We assume Q1 and Q2 are independent of y, so that Q1(x) for a fixed x really repre-

sents an infinite line load in the êy-direction. In our applications, Q1 will be due to the

weight of some topographic feature, and Q2 will represent upward buoyancy forces from

the asthenosphere. How does the plate deform? Specifically, what is the shape of the

deformed surface?

We will make two assumptions:
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upper
surface

originalQ
1
(x)

Q (x)
2

Figure 6.13:

1. The plate does not deform much. Specifically, the displacements are � H.

2. The horizontal wavelengths of Q1 and Q2 are much larger than the plate thickness,

H. In other words, the plate is “thin.”

Let ω(x) = distance between the deformed upper surface and the original upper

surface, see Figure 6.14. w(x) is positive if the surface at x has been displaced downward

upper
surface

original

w(x) x

z

Figure 6.14:

from its undeformed position. I want to find a differential equation for ω(x) in terms of

Q1(x) and Q2(x).

First, by symmetry, there can be no displacements in the êy direction, and no variable

can depend on y. Among the consequences are that the derivative of any variable with

respect to y must vanish; and that the strain components εxy = εyy = εzy = 0 (this

last conclusion follows from the relation, Equation 5.15, between the strain tensor and

the displacement field). And, using these results for ε in Equation 5.14, shows that
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τxy = τzy = 0,

Second, we assume the plate is at equilibrium, so that there is no motion. And, we

ignore all body forces on the plate, including gravity. Then ∇· ↔τ= 0 throughout the

plate. This implies that:

∂xτxx + ∂zτxz = 0 (6.16)

∂xτxz + ∂zτzz = 0. (6.17)

Suppose we integrate Equation 6.17 vertically through the plate. Then:

∫ H/2

−H/2
∂xτxz dz + τzz (z = H/2)− τzz (z = −H/2) = 0.

(Here we can use upper and lower limits on z of ±H/2, instead of using the z-coordinates

of the deformed surface. The difference is only second order in the deformation, because

τ is already first order.)

But

τzz(z =
H

2
) = −Q1(x)

τzz(z = −H
2

) = −Q2(x).

So: ∫ H/2

−H/2
∂xτxz dz = Q1(x)−Q2(x). (6.18)

Next, suppose we multiply Equation 6.16 by z and integrate vertically. Then:

∂x

[∫ H/2

−H/2
zτxx dz

]
+
∫ H/2

−H/2
z∂zτxz dz = 0. (6.19)

Integrating the right-hand integral in Equation 6.19 by parts gives:

∫ H/2

−H/2
z∂zτxz dz =

∫ H/2

−H/2
∂z(zτxz) dz −

∫ H/2

−H/2
τxz dz

= (zτxz) |z=H/2 − (zτxz) |z=−H/2 −
∫ H/2

−H/2
τxz dz.

But, τxz|z=H/2 = τxz|z=−H/2 = 0, since there are no applied shear tractions at the

outer surfaces. So, Equation 6.19 reduces to

∂x

(∫ H/2

−H/2
zτxx dz

)
=

(∫ H/2

−H/2
τxz dz

)
. (6.20)
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(You can derive these another way. Take an infinitesimally thin (dx) cross-section of the

plate, see Figure 6.15. Then, Equation 6.18 is the condition that the net vertical force

H

dx

Figure 6.15:

on the cross-section vanishes, and Equation 6.20 is the condition that the net torque

vanishes.)

Now, take ∂x of Equation 6.20, and add to Equation 6.18. You get:

∂2
x

(∫ H/2

−H/2
zτxx dz

)
= Q1 −Q2. (6.21)

The integral in Equation 6.21 is sometimes called bending moment, and written as M .

We now try to relate τxx to ω(x). First, we relate τxx to the strain εxx. Since εyy = 0,

we know that

τxx = (2µ+ λ)εxx + λεzz

τzz = (2µ+ λ)εzz + λεxx.

We can use these equations to find εxx in terms of τxx and τzz:

εxx =
1

4µ(µ+ λ)
[(2µ+ λ)τxx − λτzz] . (6.22)

Now, I claim that for a thin plate, τzz � τxx. The reason is that for a thin plate,

∂x(of anything) is � ∂z(of anything). That is, things vary much more slowly in the

horizontal direction than they do in the vertical direction, because the plate is thin. So,

since ∂xτxz = −∂zτzz then τzz � τxz. And, since ∂xτxx = −∂zτxz then τxz � τxx. So:

τzz � τxx. So, we ignore the τzz term in Equation 6.22, to obtain

εxx =

(
2µ+ λ

4µ(µ+ λ)

)
τxx =

(
E

1− ν2

)−1

τxx
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if you prefer to work with E and ν. So:

τxx =
E

1− ν2
εxx.

And: (
E

1− ν2

)
∂2
x

[∫ H/2

−H/2
zεxx dz

]
= Q1 −Q2. (6.23)

The last step is to relate εxx to ω (note that ω = −sz). By definition of εij: εxx = ∂xsx.

For a thin plate, we can expand sx(x, z) in a Taylor series in z, and just keep the linear

term:

sx ≈ a(x)z

(note: no constant term is included in this expansion, which is equivalent to assuming

that the mid-plane of the thin plate is not displaced horizontally, to first order). So

∫ H/2

−H/2
zεxx dz =

H3

12
∂xa(x). (6.24)

Now, a(x) ∼= ∂zsx. I claim that ∂zsx = ∂xω, for small deformation. To see this,

consider the undeformed plate in Figure 6.16. After deformation, the upper-right-hand

Figure 6.16:

corner of the shaded region looks like Figure 6.17. Looking at the angles in Figure 6.17,

gives −∂xω = −∂zsx. So: ∫ H/2

−H/2
zεxx dz =

H3

12
∂2
xω (6.25)

and Equation 6.23 becomes:

Q1 −Q2 =
EH3

12(1− ν2)
∂4
xω.

Or, defining

D ≡ EH3

12(1− ν2)
≡ “flexural rigidity,”
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-dw/dxangle =

angle approximately 90
for small deformation

angle = - s / zx

deformed boundary 
of shaded region

w

Figure 6.17:

D∂4
xω = Q1 −Q2. (6.26)

Given loads Q1 and Q2 on a thin plate, we can solve Equation 6.26 to find the “deflection,”

ω. This is the result I was after.

6.6.3 Application

The principal application of all this is: suppose the lithosphere is a thin plate, floating

on a fluid asthenosphere. Suppose the crust/mantle boundary is inside the lithosphere,

a distance d below the top. See Figure 6.18. Assume the asthenosphere and lower

ρ
m

ρ
m

ρ
c

lithosphere

fluid asthenosphere

crustd

Figure 6.18:

lithosphere have the same density, ρm (the actual density contrast is non-zero, but is

very small). The crustal density is ρc.
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We load the lithosphere by placing crustal material (density ρc) with height h′(x) on

the surface, as shown in Figure 6.19. The outer surface and crust/mantle interface get

ρ
c

ρ
m

ρ
m

ρ
c

h’ w

asthenosphere

load

Figure 6.19:

displaced downward a distance ω. The depression at the outer surface might show up in

the surface topography (especially if the surface is the sea floor, so there’s no erosion).

And the depression at the crust/mantle boundary might affect surface gravity.

To find the differential equation for ω, we need to relate Q1 and Q2 to h′ and ω. The

pressure load on the upper surface is Q1 = ρcgh
′(x). It is harder to find Q2 (= pressure on

lower surface of lithosphere). This pressure is due to buoyancy: the fluid asthenosphere

holds up the lithosphere.

Since the asthenosphere is fluid, the only possible horizontal internal force is the

horizontal gradient of the pressure (gravity, the other force in the system, is vertical). If

there is no motion in the fluid, then all forces inside the fluid must cancel, and so there

can be no horizontal pressure gradients. Thus, the pressure is constant over horizontal

surfaces.

A fluid asthenosphere also implies that the vertical derivative of the pressure inside

the asthenosphere is the negative of the local gravitational force: ∂zP = −ρmg. In other

words, the pressure difference between two horizontal surfaces in the fluid separated by

a distance z, see Figure 6.20, is

P1 = P2 + ρmgz.
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m
ρ

2 surfaces

P

P
1

2

fluid 

z

Figure 6.20:

Now, consider the deformed lithosphere sticking a distance ω down into the fluid, as

in Figure 6.21. The pressure on the base of the lithosphere is Q2(x) = P0 + ρmgω(x),

ρ
m

P = P
0

ρ
m

P = P
0

+ g w

fluid

lithosphere

w

Figure 6.21:

where P0 = fluid pressure on the base of the lithosphere at places where ω = 0.

P0 is needed to keep the lithosphere from sinking when the load is added. The net

downward force on the lithosphere is
∫
lithosphere(Q1(x) − Q2(x)) dx, which must vanish.

If P0 is not included in Q2, this requirement of no net vertical force would imply that

the lithosphere sinks. The lithosphere will sink a little: the asthenosphere is compress-

ible, and so may change its volume slightly in response to the additional weight of the

lithosphere from the topographic mass. But, not only is that change in volume apt to be

small, but any uniform displacement of the lithosphere has no observable consequences.

Thus, to determine P0 uniquely, we introduce the additional requirement that when av-



6.6. LITHOSPHERIC BENDING 207

eraged over the entire lithosphere, the vertical displacement is zero (in other words, that
∫
lithosphere ω(x)dx = 0).

In fact, the whole business of dealing with P0 makes the algebra a little more awkward.

So, for the time being, we will go further and assume that
∫
lithosphere h

′(x) is also 0, which

means we will subtract the mean of h′(x) from h′(x) (so that the new h′(x) will be

negative in places). In this case, there is no net vertical force from either h′ or ω, and so

P0 is not needed. Thus, we have:

Q2(x) = ρmgω(x).

So, putting Q1 and Q2 into Equation 6.26, gives:

D∂4
xω + gρmω = gρch

′(x). (6.27)

The best way to solve Equation 6.27 for arbitrary h′(x), is to expand h′ into a Fourier

series or Fourier integral, solve Equation 6.27 for ω for each term in the series, and then

add the ω terms together.

What does the solution look like for one of these terms? Suppose, for example, that

h′ = h′0 cos(kx). (6.28)

What is ω? This example is useful, also, because it tells us what happens at short and

long wavelengths. In Equation 6.28, the only restriction we need make on k is that

2π/k � lithospheric thickness (2π/k = horizontal wavelength of the load), since we

assumed the horizontal wavelength � lithospheric thickness to get our flexure equation,

Equation 6.26.

We try a solution of the form ω = ω0 cos kx. This solution will work if:

(Dk4 + ρmg)ω0 = gρch
′
0.

Or:

ω0 =

[
gρc

Dk4 + ρmg

]
h′0. (6.29)
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In practice, you might not know h′0 or h′, particularly over continents. h′(x) describes

the thickness of the load — or how much the load sticks up above the lithosphere. But,

you might not know where the top of the lithosphere is.

Instead, what you might know are surface elevations, as determined from leveling. In

that case, you know the distance above the geoid. You assume that before deformation

the lithospheric surface was parallel to the geoid. So, if h(x) = measured elevation, then

h′(x) = h(x) + ω(x) (that is, the lithosphere is now ω(x) below the constant potential

surface, and the load is h(x) above that surface).

In that case, the differential equation for ω is

D∂4
xω + gρmω = gρc(h+ ω)

or:

D∂4
xω + g(ρm − ρc)ω = gρch.

If h = h0 cos kx, and if we assume that ω = ω0 cos kx, then

ω0 =

[
gρc

Dk4 + (ρm − ρc)g

]
h0. (6.30)

6.6.3.1 Limiting cases

Let’s see what happens to ω0 at short and long wavelengths. Consider Equation 6.29,

that relates ω0 to h′0.

Short wavelengths

Suppose k is large enough that k4D � ρmg > ρcg. (Though we must also as-

sume that the wavelengths are � lithospheric thickness, so that the derivation of

Equation 6.26 remains valid.) Then

gρc
Dk4 + ρmg

� 1,

so that:

ω0 � h′0.
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In other words, there is very little deflection. This is part of the reason why

topography does not show up in Bouguer anomalies at short wavelengths: the

compensation is small. It’s not only that the compensation is deep.

Long wavelengths

Suppose k4D � ρmg. Then, Equation 6.29 is

ω0 ≈
(
ρc
ρm

)
h′0 =

ρc
ρm

(h0 + ω0) .

Or:

ω0 =

(
ρc

ρm − ρc

)
h0

which is the familiar Airy compensation result. (ω0 = root thickness.) This is why

Airy compensation works so well at long wavelengths. The lithosphere is easy to

bend — it mirrors the topography — at long wavelengths. Shear stresses within the

lithosphere are not strong enough to support the load at long wavelengths. Instead,

the load must be fully supported by buoyancy forces in the fluid asthenosphere —

which is the Airy compensation hypothesis.

We need to be more quantitative for what is meant by “long” and “short” wavelengths.

The wavelength is λ = 2π/k. The separation between short and long corresponds to

k4D = ρmg. Or: λ = 2π(D/ρmg)1/4. For typical oceanic values of E, ν, and H (H ≈
30 km): D ≈ 2 × 1030 dyne-cm. So, for typical ρm and g: λ ≈ 300 km is the dividing

line between short and long wavelengths. So, for the ocean

λ� 300 km =⇒ compensation is small

λ� 300 km =⇒ Airy compensation.

The values are not much different than this for continents. Note, also, that in order for

our results to be valid, λ must also be� H ≈ 30 km for the ocean. More general results,

without the the thin plate assumption, show the lithosphere doesn’t bend at short λ,

even if λ� H doesn’t hold.
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Go back to Equations 6.29 and 6.30. These results relating ω0 to h′0 and to h0 can

be inverted from the Fourier transform (k) domain back to the x-domain, to give a

relation between ω(x) and h′(x) or h(x). In some oceanic areas, the deflection ω(x) can

be measured. Then, you can fit the theory to the observations and solve for D. Using

estimates for E and ν, your results for D can be used to infer H: the thickness of the

thermal boundary layer for mantle convection beneath the oceans.

6.6.3.2 Example: Flexure from an island chain

We model an island chain as an infinite line load concentrated at x = 0, with mass/length

= M . (If you are familiar with Dirac delta functions: ρch
′(x) = Mδ(x).) What is ω(x) in

this case? (We assumed the load is independent of y to derive Equations 6.29 and 6.30.)

We can use Equation 6.29 if we can expand h′(x) in terms of cosines. We are assuming

the island chain is infinitely-thin, so that h′(x) = 0 for all x except x = 0 — where h′(x =

0) is infinite. To find the expansion coefficients, we first approximate this infinitely-thin

load as a block of width ‘a’ (so that the height of the block is M/ρca) centered at x = 0,

as shown in Figure 6.22. When this block is expanded as a Fourier integral of sines and

ρ
c
a

a

M

Figure 6.22:

cosines (I won’t derive it here) we obtain:

h′(x) =
M

ρc2π

∫ ∞

−∞

sin (ak/2)

(ak/2)
cos(kx) dk.

If we now take the limit as a → 0 (so the height → ∞) we obtain (noting that

limy→0(sin y/y) = 1):

h′(x) =
M

ρc2π

∫ ∞

−∞
cos(kx) dk. (6.31)
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We take the integral in Equation 6.31 as our infinitely-thin load. Note that this

integral, though, is meaningless: the integral is not well-defined. We should, really, find

ω(x) caused by the block of non-zero width a, and then set a → 0 in ω(x). But, using

Equation 6.31 as the load, without worrying about its convergence, is easier and gives

the same answer.

Equation 6.31 implies that if we separate h′(x) into cosine terms, the amplitude,

h′0(k), of each cosine is M/(2πρc) — independent of k. The response, ω0, to each cosine

term is then: (from Equation 6.29)

ω0 =

[
gρc

Dk4 + ρmg

]
M

2πρc
.

(We use Equation 6.29 instead of Equation 6.30 because in this case the island mass you

observe sticking up above the sea floor is h′(x). The lithosphere does not bend at short

wavelengths, and so ω directly under the load is approximately ω just outside the edges

of the load — so you do know where the surface of the lithosphere under the load is —

it is at the depth of the surrounding sea floor.)

To find ω(x), invert ω0 back to the x-domain:

ω(x) =
∫ ∞

−∞
ω0(k) cos(kx) dk =

gM

2π

∫ ∞

−∞

(
cos kx

Dk4 + ρmg

)
dk.

We can find this integral in integral tables. Define α ≡ (4D/ρmg)1/4 ≡ “Flexural param-

eter.” Then, we find that

ω(x) =
(
gM

8D

)
α3e−|x|/α

[
cos

(
|x|
α

)
+ sin

(
|x|
α

)]
. (6.32)

This result is obviously symmetric about x = 0 (it ought to be). A plot of −ω(x) for

x ≥ 0 looks something like Figure 6.23. Note that the ocean floor depresses under and

near to the island, but that there is a region of uplift away from the island. Let xb be

the distance between the island chain and the point of maximum uplift. Then:

dw

dx

∣∣∣∣∣
x=xb

= 0.

This derivative is easy to find, and the resulting equation is sin(xb/α)e−xb/α = 0. Or (for

xb 6= ∞): xb = nπα. The point of maximum uplift closest to the load corresponds to
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xb

-w(x)

profile of sea floor

Figure 6.23:

n = 1, where

xb = πα.

Here’s how these results can be used. Probably the most successful application has

been to the Hawaiian-Emperor seamount chain.

1. Determine the mass/length of the seamount chain, using bathymetry data.

2. Pretend the mass is all located at x = 0 — so that the chain is approximated as

an infinitely-thin line mass. This, of course, is not correct. The Hawaiian Islands

are about 150 km wide. This means that our infinitely-thin approximation causes

errors at wavelengths of less than 150 km. But, at those wavelengths the lithosphere

doesn’t bend much, anyway. So there should only be a small short wavelength error

in ω(x). (Incidentally, this suggests a way out of another problem. Equation 6.29

was derived assuming the horizontal wavelengths were � H. That’s not true for a

line load. But, by using Equation 6.29 even at short wavelengths we are including

no significant short wavelength terms in ω(x). And, as mentioned above, the exact

solution without the thin plate assumption predicts no significant short wavelength

terms in ω(x). So, our answer is pretty good.)

3. Use the result for ω(x), Equation 6.32, to compare with the observed bathymetry.

Specifically, find the maximum uplift point using the observations, and determine

α = xb/π. Once you have α, you infer H = lithosphere thickness. (Note that you
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don’t need the mass/length, M , to do this.) One omission in the results above,

is that I neglected to include the weight of the ocean water. The water fills in

depressed regions and makes ω(x) larger. I won’t go through the re-derivation, but

will just give the result: by including the weight of the water, all results for ω(x)

are the same, except that

α→
[

4D

(ρm − ρw)g

] 1
4

where ρw = water density.

For Hawaii, xb is found to be approximately 250 km, and the solution for H is H ≈
30 km.

6.6.4 Gravity

The deflection ω(x) also shows up in gravity. Surface gravity is affected by:

A. The mass load σ(x) = ρch
′(x) at the upper surface.

B. The (negative) mass load σ(x) = −ρcω(x) at the upper surface.

C. The (negative) mass load σ(x) = (ρc − ρm)ω(x) at the crust/mantle boundary.

(The effective density here is ρc − ρm because we are replacing mantle with crust,

when ω(x) > 0.)

If you observe h(x) = h′(x)− ω(x) instead of h′(x), then you replace A. and B. with

“AB: The mass load σ(x) = ρch(x) at the upper surface.”

Let’s assume that you measure h′ instead of h (it just makes the algebra a little

simpler). Then, you approximate the ρc(h
′(x) − ω(x)) upper surface load as a surface

mass at z = 0. And, you approximate the (ρc−ρm)ω(x) load as a surface mass at z = −d
(d = crust/mantle depth).

Suppose h′(x) = h′0 cos kx, so that Equation 6.29 is valid. Back in Section 6.3 we

found that gz at z = 0 due to a surface mass σ0 cos(kx) a distance ‘a’ beneath z = 0, is
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2πGσ0e
−ka cos kx. So, for our two surface masses:

gz(x, z = 0) = 2πG
[
ρc(h

′
0 − ω0) + (ρc − ρm)ω0e

−kd
]

cos kx

= 2πGρch
′
0 cos kx

[
1− gρc

Dk4 + ρmg
+
g(ρc − ρm)

Dk4 + ρmg
e−kd

]
(6.33)

where the last equality follows from Equation 6.29.

For small wavelengths, where Dk4 � ρmg, gz → 2πGρch
′(x) ≈ 2πGρch(x) (h′ ≈ h

since ω ≈ 0) which is the Bouguer correction. And, for large wavelengths (where Dk4 �
ρmg, and kd� 1):

gz → 2πGρch
′(x)

[
1− ρc

ρm
+
ρc − ρm
ρm

]
= 0 (6.34)

which is the Airy result.

More generally, given observations of h′(x) (or of h(x)) you expand h′(x) (or h(x))

in terms of cosines and sines, find gz for each term in the expansion, and then add the

gz’s for the different cosines and sines together. You compare with observations to find

D (which gives H) and d (= the crustal thickness). For long wavelength loads, you’ll

end up with about the same estimate for d as you would if you had started with Airy

compensation. That’s because Equation 6.34 equals the Airy result.

6.6.5 Remarks

These gravity equations, which can be used to estimate H from observations of gz, are

best applied in oceanic areas. They have, for example, been used to confirm the 30 km

estimate of H beneath Hawaii, as determined from the bathymetry. They are not as

useful for finding H in continental areas, because there are often substantial horizontal

chemical- and structural-related variations in gz over continents, which mask the effects

of deflection on the crust/mantle boundary. There are, though some things which have

been successfully tried beneath continents. For example, people have looked at the gravity

signal related to loading from sedimentary basins. They use seismic techniques to find

the basement rock beneath the sediments. They then know the sediment thickness, which

allows them to treat the sediments as a known load, estimate gz, and compare with data.
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Another thing that’s been done is to collect lots of gravity data over a single continent,

compare with the measured elevation h, and try to fit H to the data. When this is

done for the United States, for example, the Bouguer anomalies are found to → 0 as

the wavelength → 0. That implies that there is little gravity compensation at short

wavelengths. At the other extreme, the free air anomalies → 0 at large wavelengths,

implying that long wavelengths are compensated.

So, the picture is qualitatively what one would expect. But, if you fit the result

Equation 6.33 to the U.S. gz data, and solve for H, you find that H ≈ 5 km. That’s way

too small. This is undoubtedly partly due to the difficulties of interpreting continental

data. But, it’s also because the most useful Bouguer anomaly results come from places

with high topography. And, most of the high U.S. topography is in the west. It turns out

that the western U.S. is sitting on anomalously hot material in the upper mantle. The

heat has melted the lower lithosphere, and so the lithosphere is thinner there than you

would normally expect. But, more fundamentally, thermal expansion has uplifted the

entire region — so that interpreting long wavelength gravity from the west in terms of

lithospheric loading may not make sense. Pratt isostasy is likely to be more appropriate.

6.6.6 Examples of Pratt compensation

6.6.6.1 Basin and Range

Let’s consider the western U.S. in more detail. Specifically, we consider the Basin and

Range geological province, which includes all of Nevada, plus some of California, Arizona,

Idaho, and Utah. Broad-scale free air anomalies from this region are close to zero, so that

Bouguer anomalies are the mirror image of the topography. This implies the region is

compensated at long wavelengths. The region has high overall elevation. So, if it is Airy

compensation that is at work here, you’d expect the crust to be thick underneath the

region. The hypothesis that regions of high topography are underlain by anomalously

thick crust, is found to hold in most places around the world. This is confirmed not

only by the sort of gravity-flexure theory studies described in the previous sections.
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But it’s also supported by seismic results for the depth to the Moho (the crust/mantle

discontinuity). Those observed depths are obviously independent of any assumptions

about the compensation mechanism, and they are generally large for high elevations.

But, not for the Basin and Range. There, the Moho depth is about the same as

elsewhere — in low elevation regions — beneath the U.S. So, Airy compensation is

not supporting the Basin and Range topography. (Which means, also, that flexure is

not operative, since the effects of flexure would cause a deeper crust/mantle boundary,

just as in Airy compensation.) Instead, the conclusion is that there must be some sort

of Pratt compensation at work here. In other words, there is material of anomalously

low density beneath the Basin and Range. This is further supported by high heat flow

observed at the surface: when material is heated, its density decreases.

Is this hot material in the crust or in the upper mantle? Seismic observations show

nothing particularly anomalous about seismic p-wave speeds in the Basin and Range

crust. But, they do show that p-wave speeds in the upper mantle beneath the Basin and

Range are slower than they are at similar depths in other regions of the globe. There

is laboratory evidence of an approximately linear relationship between density and vp,

when the temperature of the material is changed: a decrease in vp implies a decrease in ρ.

This relation might appear to be the opposite of that implied by the density dependence

of vp: vp =
√

(2µ+ λ)/ρ, which suggests that a decrease in vp ⇒ increase in ρ. But,

it turns out that although an increase in temperature reduces ρ, it reduces 2µ+ λ even

more. So, the observed p-wave velocities suggest that the anomalously light material

beneath the Basin and Range is in the upper mantle.

What is going on in this region? The Basin and Range is so-named because it is

marked with long mountain ranges trending from the northeast to the southwest, sepa-

rated by wide basins. The ranges are spaced roughly 20–30 km apart. Geologists have

found that at the edge of each range there is a normal fault, see Figure 6.24. Normal

faults occur when material is being pulled apart — or extended. In fact, that is appar-

ently what’s happening to the Basin and Range. As the region extends, normal faulting

occurs. The crust and, probably, the lithosphere break up into blocks separated by the



6.6. LITHOSPHERIC BENDING 217

direction of relative slip

mountain

normal fault

Figure 6.24:

normal faults, and the blocks tip — causing mountain ranges. See Figure 6.25. Erosion

faults

Figure 6.25:

fills in the depressions, producing sedimentary basins. In this sort of geological structure,

the high points (the mountains) are called horsts, and the low points (basins) are called

grabens.

Further evidence of Basin and Range extension comes from geodetic (e.g. VLBI)

measurements of the on-going extension. Those measurements suggest an extension rate

of about 5–7 mm/yr, which is consistent with the geologically-inferred rate over millions

of years.
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So, what’s causing the Basin and Range to extend? Presumably it is the same mech-

anism that is causing the high temperatures in the upper mantle. Nobody knows for

sure, but there are a number of theories. One of the more extreme is that North America

is about to split apart into two plates, with an ocean opening between them. The hot

material would then be a rising plume of material from deep within the mantle. Not

many people believe this, though.

One of the more generally accepted hypotheses (though by no means the only hypoth-

esis) runs approximately as follows. Tens of millions of years ago there was an oceanic

plate between the North American and Pacific plates, called the Farallon Plate. The

Farallon and Pacific plates joined at a spreading center — where Pacific sea floor was

created. The eastern edge of the Farallon plate subducted beneath the western edge of

the North American plate. See Figure 6.26.

North
America

Farallon
Plate

Pacific Plate California

spreading center

Figure 6.26:

See Figure 6.27 for a cross-section view.

The material in the North American plate just above the subducting Farallon plate

could well be hot, due to frictional heating as the Farallon plate descends into the mantle.

Frictional heating could be at least partly responsible for the ‘back-arc’ volcanism that

often occurs above subducting slabs.
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Figure 6.27:

The North American plate was moving westward faster than the Farallon plate was

moving eastward. So, about 30 million years ago, the spreading center began to be

subducted beneath the North American plate. All that remains of the Farallon plate at

the present time is the Cocos plate just off Latin America, and the Juan de Fuca plate

just west of Washington. Eventually these will be subducted, too.

It is not clear, but it seems probable that the upwelling at a mid-ocean ridge turns off

when the ridge is subducted. This conclusion might be hard to accept if you believe in a

picture of upper mantle convection where the plates mirror the shape of the underlying

upper mantle convection cells, such as illustrated in Figure 6.28.

plate
(Pacific)

plate
(Farallon)

plate
(N. America)

Figure 6.28:

But it is easier to understand if, instead, plate boundaries simply correspond to places

where the original lithosphere was weak. For example, convection causes stresses on the

lithosphere. The lithosphere could well split apart where it is weakest — not necessarily

at the convection cell boundaries. Mantle material would come to the surface at the

rupture to replace the separating lithospheric material, and the result is a spreading
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center. So, if the spreading center eventually gets subducted, the original lithospheric

rupture is essentially healed, and the spreading stops.

In any case, the subduction of the Pacific/Farallon boundary is likely to have been

the event that initiated Basin and Range extension. There are several ways this could

have happened. As one hypothesis, when the the spreading center was subducted and

the upwelling of mantle material ceased, the Farallon plate no longer pushed eastward on

the North American plate. But, there is still likely to be hot material beneath western

North America which pushes out in all directions (high internal pressure). Since the

restraining force from the Farallon plate is now greatly reduced, the region is better able

to expand, leading to extension of the surface.

6.6.6.2 Hot Spots

Hot spots are another example of Pratt compensation.

I’ve mentioned the application of flexure theory to lithospheric loading by island

chains. You get subsidence beneath the chain, and a region of slight uplift a couple

hundred km away. People also find longer wavelength swells in the bathymetry around

some islands such as Hawaii and Bermuda. These swells are maybe 1000–2000 km in

horizontal extent. All the shorter wavelength wiggles due to the flexure are super-imposed

on the swell. There is a corresponding swell across the island axes in free-air gravity.

The free-air anomalies are small — maybe 20 mgal or so. The swell in the bathymetry

can be over 1 km in elevation. So, the Bouguer correction would be approximately

(0.1118 mgal/m)×103 m ∼= 100 mgal. So, the swell must be reasonably well compensated.

The crust isn’t thicker under swells than elsewhere. So, the compensation is likely to be

Pratt compensation of some sort. The observed free-air anomaly can be used to learn

about the underlying density anomaly, by assuming a compensation depth (the depth

level above which all columns have the same mass); or to learn about the compensation

depth, by assuming a known density anomaly.

The free-air anomalies are far enough from zero over the swell, to imply that the

underlying density anomaly is well below the crust mantle boundary — further down
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into the upper mantle. If, instead, the compensation were at shallower depths, there

would likely be more cancellation between the gravitational effects of the compensation

and those of the topography.

Presumably both the low density and the swell itself are caused by thermal expansion.

This suggestion is supported by the observed high heat flow in these regions. In fact,

in the most notable example of one of these regions — Hawaii — there is even volcanic

activity.

These sorts of island arcs are believed to be caused by hot plumes of material rising

up out of the lower mantle. The surface expressions of the plumes are called hot spots.

It’s not clear what causes the plumes or where they come from; they could well originate

from near the crust/mantle boundary.

Several dozen tentative hot spots have been identified around the globe. They occur

on continents as well as on oceans. They appear to remain fixed with respect to each

other over tens to hundreds of millions of years or longer. The plates move over the hot

spots, and so a hot spot leaves a track behind it. For example, the Hawaiian islands are

the end of a long chain of islands and seamounts. The seamounts — at the other end of

the Hawaiian island chain — used to be islands when they lay over the hot spot. When

they moved off the hot spot, the entire region subsided again and the islands ended up

as under-water seamounts. Because hot spots do not appear to undergo relative motion,

they have been useful in determining an absolute reference frame to describe plate motion.

6.6.6.3 Mid-Ocean Ridges

Here’s another example of Pratt compensation. Plates are pulling apart at mid-ocean

ridges. The bathymetry at these ridges shows under-water mountains and other short

wavelength features caused by the upwelling mantle material. But, all this is super-

imposed on a very long wavelength swell, several thousand km wide — essentially across

the entire ocean basin, or at least over much of it.

The free-air gravity anomalies show that the swell is mostly compensated — although

the compensation is not perfect. The departure from perfect compensation can be used
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to learn about the density, the compensation depth, etc. The anomalies are large-scale

enough that they must first be corrected for the horizontal variation of the geoid. Re-

member: the free air correction only corrects for the variation of gravity due to the

elevation of the gravimeter above the geoid. It does not correct for the variations in the

radius of the geoid. The geoid variations usually have much longer wavelengths than the

interesting gravity signal. But not in this case. In fact this swell is so broad that people

often work with it by looking at its effect on the geoid, rather than on surface gravity.

People have been able to explain the swell in the bathymetry, and the observed geoid

anomalies, as the result of thermal subsidence as the lithosphere moves away from the

ridge where it was created, and then cools and thickens. See Figure 6.29. It thickens,

thickening
lithosphere

ridge

Figure 6.29:

because material from the underlying asthenosphere cools and becomes solid — and so

becomes part of what we call the lithosphere. It subsides because as it cools its density

increases — it takes up less volume. The amount of subsidence is, presumably, consistent

with the isostatic assumption of equal mass in all vertical columns.

People observe that the ocean depth (which reflects the subsidence) varies as the

square root of the distance from the ridge. For constant spreading rates, the distance

from the ridge is proportional to the age of the lithosphere. So, the ocean depth varies

as
√

age.

People observed this
√

age dependence back before the theory of continental drift.
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Nowadays, people can explain it using simple heat flow models. This is one of the major

triumphs of the theory of continental drift, and I will derive it here. The phenomenon is

referred to as Thermal Isostasy.

6.6.6.3.1 Thermal Isostasy The model is simple. We take a sample two-dimen-

sional cross-section, and follow it as it moves away from the ridge axis. See Figure 6.30.

We find the temperature profile as a function of time. We do this by solving the equations

ridge

cross section

Figure 6.30:

for heat conduction inside the cross-section, assuming all heat conduction is vertical, so

that the column does not interact thermally with its neighbors. This assumption is prob-

ably pretty good since the temperature gradient in the lithosphere will be predominately

vertical: the outer surface is much cooler than the interior of the mantle.

So, the problem reduces to a one-dimensional conduction problem. See Figure 6.31.

Let z be positive downwards. Let z = 0 be the top of the column (the surface of the

z

0

Figure 6.31:
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earth). Assume the column extends to z = ∞. The one-dimensional equation for heat

conduction in the êz direction is:

∂tT = κ∂2
zT (6.35)

where T = temperature and κ = thermal diffusivity. Equation 6.35 assumes there are no

internal heat sources or sinks. We must solve this equation for given initial conditions

and boundary conditions:

Initial condition:

T = Tm = constant at t = 0. (Except we assume that T (z = 0, t = 0) = Ts — see

Equation 6.36 below.) Here, Tm = temperature of the mantle, where the column

originated. We assume the vertical gradient of the initial temperature is zero (i.e.

T = constant) because convection in the earth is much faster than conduction: the

column rises to the surface much faster than it can lose heat through the outer

(z = 0) surface.

Boundary conditions:

For all t > 0:

T (z = 0) = Ts = surface temperature (6.36)

T (z =∞) = Tm.

I claim the solution to the partial differential equation with these initial and boundary

conditions is unique, and is given by:

T (z, t) = Tm + (Ts − Tm)

[
1− erf

(
z

2
√
κt

)]
(6.37)

where

erf(η)(≡ error function) =
2√
π

∫ η

0
e−η

2
0 dη0.

To verify that Equation 6.37 solves the initial and boundary conditions, note that erf(∞) =
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1 (since
∫∞
0 e−η

2
0 dη0 =

√
π/2) and erf(0) = 0. So,

T (z, 0) = Tm + (Ts − Tm) [1− erf(∞)]︸ ︷︷ ︸
=0

= Tm

T (0, t) = Tm + (Ts − Tm) [1− erf(0)]︸ ︷︷ ︸
=1

= Ts

T (∞, t) = Tm + (Ts − Tm) [1− erf(∞)]︸ ︷︷ ︸
=0

= Tm.

To verify that Equation 6.37 solves the differential equation, we use the results:

∂tT = −(Ts − Tm)
[
∂ηerf(η)|η=z/2

√
κt

] z

2
√
κ

(
− 1

2t3/2

)

∂zT = −(Ts − Tm)
[
∂ηerf(η)|η=z/2

√
κt

] 1

2
√
κt

∂2
zT = −(Ts − Tm)

[
∂2
ηerf(η)

∣∣∣
η=z/2

√
κt

]
1

4κt
.

And:

∂ηerf(η) =
2√
π
e−η

2

.

So:

∂2
ηerf(η) = − 4√

π
ηe−η

2

= − 2√
π

z√
κt
e−η

2

.

So:

−∂tT + κ∂2
zT =

−(Ts − Tm)
2√
π
e−η

2

∣∣∣∣∣
η=z/2

√
κt

z

4
√
κt t

+ κ(Ts − Tm)
2√
π

z√
κt

e−η
2
∣∣∣
η=z/2

√
κt

1

4κt

= 0

So, Equation 6.37 does, indeed, solve the differential equation.

We now have an expression for the temperature T (z, t). What is the density? For

small temperature variations, (T − Tm):

ρ ≈ ρm [1 + α(Tm − T )]
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where ρm = density at the mantle temperature Tm, and α = volumetric coefficient of

thermal expansion. So, if ∆ρ ≡ [ρ(z, t)− ρm] is the increase in density, then:

∆ρ = ρmα(Tm − Ts)
[
1− erf

(
z

2
√
κt

)]
. (6.38)

Note that Tm > Ts, α > 0 (a decrease in T causes an increase in ρ), and erf(η) ≤ 1

(with erf(η) = 1 only if η =∞). So, ∆ρ ≥ 0, implying an increase in density throughout

the column. In fact, since erf(η) decreases with decreasing η, we can conclude that ∆ρ

increases with time. That suggests that the column should subside with time, due to

isostasy. To estimate that subsidence, we impose the isostatic condition of equal masses

in vertical columns.

In Figure 6.32, the column on the right has subsided by h. Since all this is under

water

ρ
m

ρ
w

ρ
m

+

∆ ρ

column 
later on

h

ridge axis
column at the

Figure 6.32:

water, the height h is filled up with water of density ρw. There should be equal masses in

these two columns. That’s nonsense, because each column has infinite mass. But that’s

just an artifact of our infinite column model.

Instead, just consider the difference in mass between the two columns. The left hand

solid column has a uniform density of ρm between z = 0 and z =∞. The right hand solid

column has density ρm + ∆ρ between z = 0 and z = ∞ (the reference level z = 0 goes

up and down with the top of the column). So, the difference in density is ∆ρ between

z = 0 and z =∞. Except, the right hand solid column is a length h shorter than the left
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hand column. That is, it is missing the mass ρmh. It has replaced the solid mass with

water, so now has added the mass ρwh.

So, the extra mass in the right hand column is

∫ ∞

0
∆ρ(z, t) dz − ρmh+ ρwh = 0

(the extra mass is set to zero, here, because of our isostatic assumption). Or:

(ρm − ρw)h =
∫ ∞

0
ρmα(Tm − Ts)

[
1− erf

(
z

2
√
κt

)]
dz.

It turns out that
∫ ∞

0
[1− erf(x)] dx =

1√
π

(6.39)

Using Equation 6.39 gives h(t) = depth of ocean at time t:

h(t) = α(Tm − Ts)2
√
κt

π

(
ρm

ρm − ρw

)
. (6.40)

Typically, h(t) ≈ 3–4 km depth a long way from the ridge. The important result is that

h is proportional to
√
t, as is observed. (Alternatively, because the distance from the

ridge = (plate velocity) × t, then h is proportional to the square root of that distance.)

People find that the
√
t dependence of h tends to disappear a few thousand km from

the ridge. There, the ocean floor flattens out. Probably the background heat flow through

the entire ocean floor counteracts the cooling described here, and keeps the ocean floor

elevated to some minimal level.

So, we now have a model of the bathymetry. What about the geoid? Specifically,

what effect does δρ have on the geoid height N?

The situation here is an example of what was referred to as “Generalized Pratt com-

pensation” in Section 6.3. There, we considered the case of topography with an x-

dependence of eikx. If δρ(z′)eikx is the density anomaly that supports the topography,

and if the compensation is perfect (as it is here), then the “Generalized Pratt” result in

Section 6.5.1 is:

N(x) =
2πG

g

(∫ 0

−H
δρ(z′)z′ dz′

)
eikx (6.41)



228 CHAPTER 6. INTERPRETATION OF OBSERVED GRAVITY ANOMALIES

where H is the compensation depth (that is, where δρ(z ′)eikx = 0 below z′ = −H).

Equation 6.41 is valid so long as the horizontal wavelength is much larger than the

compensation depth: kH � 1.

Since the amplitude of N(x) is independent of k, we can generalize Equation 6.41 to

arbitrary x dependence in δρ (so long as it is long wavelength) to obtain:

N(x) =
2πG

g

∫ 0

−H
δρ(x, z′)z′ dz′. (6.42)

How do we modify this result so that it is appropriate for our thermal isostasy prob-

lem? First, the δρ in Equation 6.42 is different from our ∆ρ: δρ also includes the mass

deficiency (ρw − ρm) in the depth h(x), due to replacing rock with water. Second, our

depth of compensation is at ∞, and our z-axis is positive downwards. So:

N(x) =
2πG

g

[∫ 0

h(x)
(ρw − ρm)z dz +

∫ 0

∞
∆ρz dz

]
. (6.43)

But, the second integral in Equation 6.43 needs some more justification. We needed to

assume |kH| � 1 to derive Equation 6.43, but for |H| =∞ this is obviously wrong. On

the other hand, for the thermal isostasy case, ∆ρ goes to 0 pretty rapidly as z gets large.

Most of the density anomaly is near the surface. So, all we really need to assume to get

a pretty reliable answer, is that the horizontal wavelength is� the thickness of this near

surface layer. And, that’s a pretty good approximation in our case since the wavelength

of the swell is several thousand km. So, Equation 6.43 is probably pretty good.

Using our result (Equation 6.38) for ∆ρ, we get:

N =
2πG

g

[
−(ρw − ρm)h2

2
+ ρmα(Tm − Ts)

∫ 0

∞

[
1− erf

(
z

2
√
κt

)
z dz

]]
. (6.44)

From integral tables, we find that:
∫∞
0 η[1− erf(η)] dη = 1

4
. So, simplifying the integral in

Equation 6.44 and using Equation 6.40, for h in terms of t, gives N as a function of age:

N(t) = −
[

2πGρmα(Tm − Ts)κ
g

] [
1 +

2ρmα(Tm − Ts)
π(ρm − ρw)

]
t. (6.45)

Note that N(t) is linearly proportional to the age, t (or, equivalently, to the distance

from the ridge). This linear dependence agrees well with what is observed. Note, also,

that N(t) is < 0, so N decreases away from the ridge axis.
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The effects of the
√
t bathymetry have been noticed in another way, near transform

faults along mid-ocean ridges. Mid-ocean ridges are not strictly linear — but consist of

linear segments separated by transform faults, as in Figure 6.33. Along a transform fault,

transform fault

mid-ocean ridge

Figure 6.33:

the direction of motion is parallel to the fault. Along the continuation of a transform

fault, material on different sides will be of different ages. See Figure 6.34. Because of the

time-dependent subsidence, the younger material will have greater elevation. So, if we

younger

older

x
x

A

Figure 6.34:

look at Figure 6.34 in cross-section from along the x-axis, we’d see Figure 6.35. At least,

older younger

transform fault axis

Figure 6.35:
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this is what we’d see for a cross-section right next to the upper arm of the spreading

ridge (at xA in Figure 6.34). At this point the younger lithosphere has just been created

and has just come in contact with the older lithosphere on the other side of the fault

axis. The elevation difference is determined by the age of the older lithosphere at this

time.

As the cross-section moves away from the ridge, both sides cool and subside. But,

the subsidence is not linear in time — it varies as
√
t. This implies that the elevation

difference between the two sides should decrease with time.

People first noticed and explained this sort of feature using bathymetry results in-

ferred from satellite altimeter data. Offsets in elevation across the fault axis can be as

large as 2 km. The results confirm the
√
t age dependence of the subsidence. But, the

results also show something else. As a cross-section moves away from the ridge, the ele-

vation difference between material on the two sides does decrease, consistent with the
√
t

subsidence. But not right across the transform fault axis. There, the elevation difference

remains fixed — determined by the initial elevation difference when the two sides first

came in contact. The pattern across the fault looks like that shown in Figure 6.36. The

older younger

Figure 6.36:

size of the discontinuity between the older and younger rocks shown in Figure 6.36 is the

initial offset.

This shows that the lithosphere can support shear stress over many tens of millions

of years (you see this feature in cross-sections many tens of millions of years old). The

slopes in Figure 6.36 in the bathymetry near the fault are determined by how thick the

lithosphere is. For example, thin lithosphere is easier to bend and so the slopes are larger
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than for thick lithosphere. In fact, people have used thin plate flexure theory to try

and reproduce the observed slopes by varying the flexural rigidity parameter D. (In this

application, the plate surface is required to have the observed discontinuity in elevation

right at the fault, and also to have the observed elevation difference between x =∞ and

x = −∞.) From this they infer the thickness of the lithosphere.

One more observation of the
√
t result comes from observations of island arc loading

from the Hawaii-Emperor Seamount chain, and other island arcs. I described how you

can infer the lithospheric thickness from observations of bathymetry and gravity around

island arcs. For example, you measure the distance between the arc axis and the point

of maximum uplift that usually occurs a couple hundred km away. When people do

this for different islands in the Hawaii-Emperor chain, they infer different lithospheric

thicknesses. The apparent thickness is correlated with the age of the sea floor at the

time the island was formed (as determined by geological dating). In fact, the observed

thickness appears to be proportional to
√

that age.

This says two things:

1. The results are consistent with the thermal isostasy model, which predicts litho-

sphere thicknesses which depend on age as
√
t. The idea is that the lithosphere/as-

thenosphere boundary is presumably determined by temperature. It is an isotherm,

so that its depth z satisfies: T (z) = constant ⇒ z/2
√
κt = constant.

2. The lithospheric thickness which determines the flexural response is evidently the

thickness at the time of loading, not the thickness at the present time (since the

present thicknesses are larger than the original thicknesses).

6.7 Convergence Zones

We’ve described the interpretation of gravity anomalies and bathymetry using flexure

models (essentially Airy compensation) and Pratt models (such as thermal isostasy).

Now, as a final example, I want to consider a situation that involves both sorts of models

— and includes some uncompensated loading.
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People long ago observed large (100–150 mgal, or more) negative free-air anomalies

over oceanic trenches, with somewhat smaller but still large (20–80 mgal) positive anoma-

lies on either side of the trench. The negative anomaly over a trench is much larger than

you’d expect if the gravity signal came only from the mass that had to be removed to

form the trench. In other words, the Bouguer anomaly is still large and negative. Before

the theory of plate tectonics, this result was a mystery. Now, plate tectonics explains it.

At a trench, one plate is diving down beneath the other. See Figure 6.37.

sedimentstrench

Figure 6.37:

The right-hand plate scrapes sediments off the left-hand plate, which mostly fill the

trench. Sediments have low density, and this further reduces the gravity field above the

trench. The amplitude of the free-air anomaly over a trench tells you how deep the

sediment wedge is (typically, tens of km).

The positive anomaly on the right hand side is usually pretty large: 50–75 mgal. It

is presumably due to the descending slab. That slab is cool and so is denser than the as-

thenosphere it is passing through (that density difference is pulling the slab downwards).

The slab is not compensated by lower elevations at the surface, because the region is un-

der compression, keeping the topography high. So, gravity above the slab is anomalously

large.

The positive anomaly on the left is somewhat smaller: maybe 20 mgal. It is caused

by buckling of the left hand plate, in response to the resistant pressure force at the

trench from the other plate. The buckling increases the topography there, and it is
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uncompensated: it is not supported from below. So, there is excess mass in the vertical

column beneath that point. So, gravity is large. This buckling has been modeled with

thin plate flexure theory, to learn about the thickness of the lithosphere and the resistant

pressure force at the trench.

6.8 The Long-Wavelength Geoid

Most of the discussion so far in this chapter has involved the interpretation of gravity at

wavelengths � radius of earth. What about at longer wavelengths (many thousands to

tens of thousands of km)? Those are best studied by using the geoid, rather than gravity

anomalies, because longer wavelengths are more prominent in the geoid.

At these very long wavelengths, the relation between topography and the geoid can

be quite complicated. Some of the global-scale topography is undoubtedly supported by

near-surface compensation. For example, the mean ocean-continent elevation difference

is largely compensated by a corresponding difference in ocean-continent crustal thick-

nesses. If long wavelength topography is compensated at depths of a few tens of km,

the gravitational signal from the compensation should almost exactly cancel the signal

from the root: a signal with a wavelength of many thousands of km will decrease only

slightly over a vertical distance of tens of km. In that case, there would be virtually no

correlation between topography and the geoid.

But, some of the longest-wavelength topography is supported by density anomalies at

greater depths in the mantle — such as those caused by the thermal anomalies associated

with mantle convection. The geoid is sensitive to the earth’s deep structure at global-scale

wavelengths, because a long-wavelength gravitational signal decreases only slowly with

distance. But the relation between a deep internal density anomaly and the topography

it causes is not straightforward.

Beginning in the mid-1980’s, when three-dimensional, global seismic velocity results

started to appear, people began to successfully model and interpret the observed global-

scale geoid. The idea, goes like this:
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There are density anomalies throughout the mantle, caused by thermal anomalies

(e.g., colder material is denser). These density anomalies drive mantle convection,

through the buoyancy forces that act on them. The density anomalies affect the geoid

to an extent that depends on how deep they are.

At the same time, the density anomalies tend to be compensated. For example, a

positive density anomaly will push down the material underneath it, and pull down the

material above it. So it will cause depressions at the outer surface, at the core/mantle

boundary, and at every other internal boundary. These depressions act like negative mass

anomalies, and their effects on the geoid tend to offset the direct effects of the density

anomaly. The situation is thus similar to that for the near-surface compensation that we

have been considering throughout this chapter. The degree to which the two effects cancel

in the geoid, depends on which boundaries are perturbed and by how much. The answer

to that problem depends on where the density anomaly is, and on how effectively stresses

can be supported by the material that lies between the anomaly and the boundary. That,

in turn, depends on the earth’s viscosity as a function of depth.

What people do, is to infer the internal density anomalies from the three-dimensional

seismic velocity maps. They convert seismic velocity anomalies to density anomalies by,

usually, multiplying the velocity anomalies by a constant. The constant is sometimes

chosen to be be depth-dependent. They then estimate the vertical displacement of the

earth’s surface and of all internal boundaries, by solving differential equations that de-

scribe the earth’s viscous response to internal loads. The boundary displacement depends

on the viscosity profile. The viscosity profile is adjusted until the geoid prediction (com-

ing from the combined effects of density anomalies and boundary displacements) best

matches the observed geoid.

People have obtained good agreement with the observed long-wavelength geoid. 70–

80% variance reductions are not uncommon for spherical harmonics of degree and order

of, say, less than 8 (corresponding to wavelengths of 5000 km and longer). And, al-

though not everyone agrees, most people have concluded that to obtain a good fit, a

large increase in viscosity is needed between the upper and lower mantles (lower mantle
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viscosity approximately 1 to 2 orders of magnitude larger than upper mantle viscosity,

with upper/lower mantle dividing line at approximately 660 km depth).
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Chapter 7

Postglacial Rebound

During the last ice age, enormous volumes of ice accumulated over Canada and Scandi-

navia, with thicknesses as large as 3–4 km. These loads depressed the underlying earth.

The ice began to melt about 22,000 years ago, and had disappeared about 13,000 years

later (i.e. 9000 years ago).

As the ice melted, the earth initially rebounded elastically, and then continued to

uplift due to the viscous relaxation of the shear stresses inside the earth. (Before melting,

the ice had presumably been in place long enough that the shear stresses below the elastic

lithosphere had almost entirely disappeared due to viscous flow. So, the removal of the

load caused shear stresses.) In fact, the land is still uplifting. For example, Hudson Bay

— a depression left by the ice — still exists. By constructing models of the rebound,

and comparing the model predictions against observations of such things as the uplift

rates, people have been able to infer the viscosity of the earth, and to place constraints

on models of the ice load (i.e. on the volume and horizontal extent of the ice, and on the

time history of the melting). This has resulted in what are probably the best estimates

for the earth’s viscosity.

237
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7.1 Theory

Suppose the earth has a Maxwell solid rheology. Suppose we add or remove a load from

the earth’s surface. How do we compute the uplift of the surface as a function of time?

To address this question, we will consider a simple earth model. Our earth is a homo-

geneous, incompressible, half space. Furthermore, we assume the surface load depends

only on one horizontal coordinate, so that we have a two-dimensional problem (with hor-

izontal and vertical coordinates x and z, respectively). We are assuming that the earth

is homogeneous, so that the entire earth is a Maxwell solid. Consequently, there is no

elastic lithosphere.

This is the simple model people used when they first considered the problem about

30 years ago. It provides a pretty good qualitative picture of visco-elastic rebound. And,

it even gives an analytical relation between the relaxation time and the viscosity, that is

reasonably consistent with the numerical results obtained from more recent, complicated

models. Later, I’ll describe how the newer models have extended the simple model used

here.

We will work in the Fourier-transformed frequency domain, where the independent

variable is the frequency, ω, rather than the time, t. The advantage of doing this is that

then we can use the correspondence principle. That is, we can solve the problem for

an elastic earth, and then let µ → µ(ω) and λ → λ(ω) and transform back to the time

domain.

7.2 Elastic Problem

Suppose a pressure P0(x) is applied to the earth’s surface (z = 0). See Figure 7.1.

Assume the earth is a homogeneous, incompressible, elastic half space. We try to find

the surface displacement, s(x, z = 0). Later, we will use the correspondence principle to

obtain the visco-elastic solution.

Note that we are assuming that P0(x) is independent of y. By symmetry, this implies

that sy(x, z) = 0, and that no variable can depend on y (so that ∂y(anything) = 0).
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earth

(µ, λ)

z
P0 (x)

z = 0 x

Figure 7.1:

The stress-strain relation is

τij = −Pδij + µ [∂isj + ∂jsi] (7.1)

where P = pressure. Normally, P = −λ∇ · s. But for an incompressible solid, λ = ∞
and

∇ · s = 0, (7.2)

and so P cannot be determined from s. So, we have an extra equation (Equation 7.2)

and an extra unknown (P).

The momentum equation (F = ma) in the time domain is ρ∂2
t s = ∇·τ . We are in the

frequency domain, where ∂2
t → −ω2. We are only interested in the long period response

(long compared to seismic wave periods of seconds to minutes). In that case ω is small,

so that there is negligible acceleration, and the ρ∂2
t s term can be ignored. So:

∇· ↔τ≈ 0. (7.3)

By using Equation 7.1 in Equation 7.3 to eliminate the tensor
↔
τ from the equations,

and noting that µ = constant from the homogeneous earth assumption, we obtain:

−∇P + µ
[
∇2s+∇∇ · s

]
= 0.

Or, using Equation 7.2 to eliminate ∇ · s

∇P = µ∇2s. (7.4)
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Equations 7.4 and 7.2 are our differential equations, and P and s are our unknown

variables.

We also have boundary conditions at z = 0: τzz(z = 0) = −P0. Or, using Equa-

tion 7.1:

P(x, z = 0)− 2µ∂zsz(x, z = 0) = P0(x). (7.5)

Also, τ13(x, z = 0) = 0, since there is no shear traction at the upper surface. This implies,

using Equation 7.1 for τ13 that:

∂xsz(z = 0) + ∂zsx(z = 0) = 0. (7.6)

Also, all variables must remain finite as z → −∞.

The differential equations are easier to solve if we first transform them by taking their

derivatives. First, we take ∇· (Equation 7.4) and use Equation 7.2, to obtain:

∇2P = 0. (7.7)

Second, we take ∇× (Equation 7.4), to get:

∇2
(
∇× s

)
= 0. (7.8)

Since ∇ · s = 0, and since ∂y(anything) = 0, then there is some scalar, f = f(x, z), for

which

sx = ∂zf (7.9)

sz = −∂xf. (7.10)

(Equations 7.9 and 7.10 follow because ∇ · s = 0⇒ s = ∇× φ for some vector φ. Then,

we use the fact that ∂yφi = 0 for all i, and define f = −φy.)
Equation 7.8 is a vector equation. But ∇× s has êx and êz components that vanish,

because sy = 0 and ∂y = 0. So, the only non-zero component of Equation 7.8 is the

êy-component, which reduces to:

(
∂4
z + 2∂2

x∂
2
z + ∂4

x

)
f = 0. (7.11)
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Equations 7.11 and 7.7 are now our differential equations, and P and f are our

unknowns. The boundary conditions, Equations 7.5 and 7.6, become:

P(x, z = 0) + 2µ∂2
xzf(x, z = 0) = P0 (7.12)

∂2
zf(x, z = 0) = ∂2

xf(x, z = 0). (7.13)

We’ve lost some of the original information in deriving these equations for P and f ,

because we obtained them by taking derivatives of the original equations. We will find,

as a consequence, that the general solution for s will include an arbitrary multiplicative

constant. To find the constant we will have to substitute our solution into one of the

original equations: Equation 7.4.

Let’s see how this works. First, we solve the partial differential equations, Equa-

tions 7.11 and 7.7, making sure we satisfy the boundary conditions Equations 7.12 and

7.13. We do this in the wave number domain. That is, we assume

P0(x) = P0e
ikx (7.14)

where P0 is a constant. The rationale for this is that any P0(x) can be expanded as a

Fourier integral of eikx terms. So if we can solve our equations for a single eikx term, we

can add together (i.e. integrate) the results to obtain the solution for an arbitrary P0(x).

To be definite, and to avoid having to use absolute values in what follows, we will assume

that k ≥ 0.

We look for solutions of the form

P(x, z) = P(z)eikx

f(x, z) = f(z)eikx

Then ∂x → ik, and Equations 7.11 and 7.7 become:

∂2
zP = = k2P

(∂4
z − 2k2∂2

z + k4)f = 0.
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The boundary conditions are

P(z = 0) + 2µik∂zf(z = 0) = P0

∂2
zf(z = 0) = −k2f(z = 0).

The most general solution is

P(z) = P0e
kz

f(z) = A(1− kz)ekz

where we have not included the e−kz solutions to the differential equations, since they

→∞ as z → −∞; and where A is an arbitrary constant, at this stage. So

P(x, z) = P0e
kzeikx

sx(x, z) = −Ak2zekzeikx

sz(x, z) = −Aik(1− kz)ekzeikx.

To find A, we use these results in ∇P = µ∇2s (Equation 7.4), and obtain:

A =
−i

2µk2
P0.

Thus, the vertical displacement at the surface (z = 0) — which is the quantity that can

be observed — is:

sz(x, z = 0) =
−P0

2µk
eikx =

−P0(x)

2µk
. (7.15)

If we were to take this result (Equation 7.15) directly over to the Maxwell solid case

by replacing µ by µ(ω), we’d find a distressing thing: If you put a mass on the surface

and wait, the mass sinks out of sight as t→∞. You can see this from Equation 7.15, by

noting that for a Maxwell solid at long periods, µ→ 0 and so sz(z = 0)→∞.

The problem is, we have ignored the effects of gravity acting on the deformed earth.

Instead of the equation ∇ · τ = 0, we should have used ∇ · τ + ρg = 0. Luckily, we can

include these effects as sort of an afterthought, as follows.

Suppose we load the earth with a surface mass per unit area = M(x). The earth’s

surface rises by the amount sz(x, z = 0) (sz(x, z = 0) will be negative for a positive
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surface mass load — note the negative sign on the right-hand-side of Equation 7.15).

The total pressure at z = 0 is the pressure due to M(x), plus the pressure due to gravity

pulling down on the extra mass above z = 0. This extra mass per area is ρsz(x, z = 0),

where ρ = density of the earth. So, Equation 7.15 for sz(x, z = 0) is ok, as long as we

use

P0(x) = gM(x) + ρgsz(x, z = 0).

Using this result for P0 in Equation 7.15 gives:

sz(x, z = 0) =
−gM(x)

2µk




1

1 +
ρg

2µk


 =

−gM(x)

2µk + ρg
. (7.16)

Because the additional pressure from the deformed surface has the opposite sign of the

pressure from the applied load, the effects tend to offset one another. What happens is

that the earth depresses under an applied load until perfect compensation is obtained.

At that point, the pressures from the deformed surface and from the applied load exactly

cancel, and the displacement stops.

We now transform our earth into a Maxwell solid. We are in the frequency domain,

so we can do this by modifying Equation 7.16 so that:

µ→ µ(ω) = µ




iω

iω +
1

τ0


 (7.17)

where τ0 = η/µ and η is the viscosity. By using Equation 7.17 in Equation 7.16, we

obtain: 
2µk

iω

iω +
1

τ0

+ ρg


 sz(x, z = 0) = −gM(x).

Or:
[
(2µk + ρg)iω +

ρg

τ0

]
sz(x, z = 0) = −g

[
iω +

1

τ0

]
M(x) (7.18)

Equation 7.18 is valid in the frequency (ω) and wave number (k) domains. We can

transform back to the time domain by replacing iω with ∂t:
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[
(2µk + gρ)∂t +

ρg

τ0

]
sz(x, z = 0, t) = −g

[
∂t +

1

τ0

]
M(x, t). (7.19)

Although we could also transform back to the x-domain, we choose, instead, to leave

Equation 7.19 as it is.

Let’s solve this differential equation, Equation 7.19, in the time domain for the case

where the load M0e
ikx is removed instantaneously at t = 0:

M(x, t) =




M0e

ikx t < 0

0 t ≥ 0.

What is sz(x, z = 0, t)?

First, for t < 0 we’ll assume the load has been in place long enough that all motion

has stopped. Then: ∂tsz = 0. So, from Equation 7.19

sz(x, z = 0, t) =



− g
τ0
ρg

τ0


M0e

ikx = −M0e
ikx

ρ
t < 0. (7.20)

That’s the result we’d get for a mass floating on a fluid.

Next, at t = 0 all ∂t → ∞ (∂tM = Dirac delta function). So, since ρg/τ0 and 1/τ0

are finite, the equation for sz at t = 0 reads:

(2µk + ρg)∂tsz = −g∂tM.

Writing ∂tsz = ∆sz/∆t, ∂tM = ∆M/∆t, and cancelling ∆t’s, gives:

∆sz =
−g∆M

2µk + ρg
.

Here, ∆M is the change in M(t) in going from t < 0 to t > 0, and similarly for ∆sz.

Since ∆M = −M0e
ikx, then:

∆sz =
gM0e

ikx

2µk + ρg
(7.21)

By adding Equation 7.21 to Equation 7.20, we obtain sz immediately after the removal

of the load:

sz =

[
g

2kµ+ ρg
− 1

ρ

]
M0e

ikx t = 0. (7.22)



7.3. NUMBERS 245

Note that there is, as yet, no dependence on τ0. So, the initial response doesn’t

depend on the viscosity.

Now, let’s consider t > 0. For t > 0, M = 0. So, the equation for sz is:

∂tsz(x, 0, t) =

[
−gρ

τ0(2µk + gρ)

]
sz(x, 0, t).

And, the initial condition is: sz(x, 0, 0) = sz given by Equation 7.22. The solution is:

sz(x, 0, t) =

[
g

2kµ+ ρg
− 1

ρ

]
M0e

ikx exp

[
−gρt

τ0(2kµ+ gρ)

]
. (7.23)

7.3 Numbers

For the earth, ρ ≈ 5 gm/cm3, g ≈ 103 cm/s2, and µ ≈ 1012 dyne/cm2. So: ρg/µ ≈
5× 10−9 cm−1. For wavelengths much smaller than the radius of the earth — which is a

reasonable approximation for the ice load — k � 2π/6.4× 108 cm−1 ≈ 10−8 cm−1. So:

µk � ρg. So, for our case, Equation 7.23 reduces to

sz(x, 0, t) ≈
[
g

2kµ
− 1

ρ

]
M0e

ikx exp

[
−gρ
2kµ

t

τ0

]

≈ −
[

1

ρ

]
M0e

ikx exp

[
−gρ
2kµ

t

τ0

]
.

7.4 Interpretation

The original depression is −(1/ρ)M0e
ikx. The elastic rebound at t = 0 is

gM0e
ikx

2kµ+ ρg
≈ gM0e

ikx

2kµ
� M0e

ikx

ρ
.

So, the initial elastic uplift is much smaller than the original depression.

Most of the uplift occurs through the later visco-elastic relaxation. As t→∞, sz → 0,

and so the surface is flat again. The decay time for the uplift is τ0(2kµ/gρ) which is� τ0.

Thus, the decay time � relaxation time for the solid. Note, also, that the decay time

depends on k. Consequently, for a more realistic ice load distribution, where there are

contributions from lots of k’s, the depression changes shape as the ground uplifts, with
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longer wavelengths uplifting more quickly. The result that the long wavelengths decay

more quickly can be understood as follows. There is a balance between the buoyancy

force acting on the deformed outer surface, and the viscous shearing stresses within

the earth. The buoyancy force depends on the amplitude of the displacement field.

The shear stresses depend on the strain rate; which, in turn, depends not only on the

displacement amplitude, but also on the spatial wavelength and the rate of motion.

A larger wavelength implies a smaller stress (the strain is proportional to the spatial

derivative of the displacement). And, a larger rate of motion implies a larger strain

rate. So, large wavelength terms must have larger rates of decay in order to balance the

buoyancy force.

Before I describe how people have used these sorts of results to learn about mantle

viscosity, I want to describe the more recent, complete models of postglacial rebound.

These models extend our relatively simple model to include:

1. the spherical shape of the earth.

2. compressibility and self-gravitation.

3. radially-dependent values for the earth’s material properties. Seismic results for

ρ, λ, and µ are used. And a layered profile is adopted for the viscosity, usually

consisting of an elastic lithosphere and core, and a 2-layer viscosity model: one

layer above the seismic 660 km discontinuity (the upper mantle), and the other

layer below that discontinuity (the lower mantle), with both layers assumed to

have uniform viscosities. Data can then be inverted to find the upper and lower

mantle viscosities, and the lithospheric thickness. Some people are now beginning

to include more viscous layers in their models.

4. people sometimes also consider the effects of the melting ice on global sea level,

and then use the change in sea level as an additional load on the earth.

5. a more realistic model of the surface ice distribution.
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The best ice sheet models are reasonably complicated. Their ice boundaries are largely

determined from end moraine positions. The total ice volume comes from geological data

for changes in sea level. The idea is that if you are far away from the ice, the uplift is

not affected much by the viscous rebound, but mostly only by changes in the ocean

volume caused by the melting ice. Thus, by geologically determining the sea level change

during the melting, you can infer the total ice mass as a function of time. To estimate

the more detailed temporal and spatial distribution of the ice, people use parameterized

time- and space-dependent functions, and then fit the parameters in those functions to

the postglacial rebound observations, in addition to fitting the viscosity.

7.5 The Data

People have fit their model results to various types of data, to infer mantle viscosity, etc.

Many of these data types are ambiguous, in that they may at least partially reflect the

effects of other geophysical phenomena.

1. geological mapping of ancient raised beaches, both from areas under the ice sheets

and from areas around the edges of the ice sheets. This is probably the most

unambiguous type of data, and is particularly useful for constraining lithospheric

thickness and the viscosity profile within, say, the upper 1000 km of the earth.

2. the geoid and long wavelength free-air anomalies in the regions surrounding the

ice loads. For example, there are large negative gFA and geoid anomalies over

Hudson Bay, with the gFA anomaly reaching about −50 mgal. These anomalies

have sometimes been interpreted as the effects of postglacial rebound: the earth

has still not fully adjusted to the removal of the ice loads, and so there is a mass

deficiency under those regions. When interpreted in this manner, the observed

anomalies have been found to provide tight constraints on the deep mantle viscosity.

However, it has been argued that a significant fraction — maybe most — of the

observed gravity anomalies in these regions may be due to causes not related to

postglacial rebound (mantle convection, for example). In fact, people have recently
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become nervous enough about this possibility, that they have pretty much stopped

using these types of observations in their postglacial rebound inversions.

3. LAGEOS orbit solutions have allowed for the determination of the secular (i.e.

linear in time) change in J2, commonly denoted as J̇2. The observed J̇2 is approxi-

mately −2×10−11 yr−1 to −3×10−11 yr−1 (for comparison, J2 ≈ 10−3). This result

has been interpreted as due to the on-going re-distribution of mass associated with

postglacial rebound, and has provided a strong constraint on lower mantle viscosity.

However, there are other possible causes of J̇2. For example, present-day changes

in the ice volumes of Greenland or Antarctica are not at all well known, and their

effects on J̇2 could well be as large or larger than the effects of postglacial rebound.

So, people who interpret the observed J̇2 as due to postglacial rebound, do so at

their peril.

4. secular changes in the earth’s rotation rate (as inferred from ancient eclipse data)

and in the pole position (as observed with telescopes over the last 100 years or so).

Both of these motions will be discussed in more detail in Section 9 below. There

are probably important contributions to this secular variability due to changes

in the earth’s inertia tensor caused by postglacial rebound. When interpreted

in this manner, the observations have provided tight constraints on lower mantle

viscosity. Except that, as with J̇2, there could also be large contributions from

other mechanisms that involve mass re-distribution, including changes in polar ice

volumes.

5. on-going vertical and, to a lesser extent, horizontal displacements of the earth’s

surface; and, similarly, on-going changes in surface gravity. People are just now

beginning to set out to observe these changes using GPS, VLBI, and absolute

gravimeters. They should eventually provide reasonably unambiguous constraints

on viscosity in the upper 1000 km, or so, of the mantle. Understanding the on-going

vertical motion along coastlines is also important in trying to interpret observed

changes in sea level as recorded by tide gauges. Tide gauge data have been used to
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infer the global rise in sea level over the past century (probably 1.5–2.0 mm/yr).

But, those studies require that first the effects of postglacial rebound be removed

from the data, so that the remainder can be interpreted in terms of sea level. For

example, if a tide gauge indicates a rise in sea level, it may be because sea level

did rise; or it may be because the land under the tide gauge subsided. Vertical

motion along the North American and Northern European coastlines (where a

disproportionally large percentage of the world’s tide gauges are located) caused

by postglacial rebound is likely to be as large as several mm/yr in places. Thus,

errors in the postglacial rebound estimates could well corrupt the global sea level

rise results.

7.6 The Conclusions

There is still disagreement as to what the postglacial rebound studies imply for the

earth’s viscosity profile. Different studies have reached different conclusions. Estimates

of upper mantle viscosity (above 670 km depth) seem to have converged to values of

about η ≈ 1021 Pascal-second (1 Pascal-second = 1 Newton–sec/m2): possibly a little

smaller. (A 1021 Pascal-second viscosity corresponds to a Maxwell relaxation time of a

few centuries, and to decay times that are much longer than that.)

As for the jump in viscosity in going from the upper to the lower mantle (from above

670 km depth, to below that depth), estimates range from maybe only a factor of 4–5

jump in viscosity, to a lower mantle η that is one to two orders of magnitude greater

than the upper mantle η.
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Chapter 8

Earth Tides

The gravitational attraction of the sun and moon causes tides both in the ocean and in

the solid earth. The tides in the ocean are, of course, familiar to anyone who has visited

the sea shore. The solid earth tides are not as well known to most people. This is not

because the earth tides are small. In fact, peak-to-peak vertical tidal displacements are

typically many tens of centimeters. Instead, the difficulty is that when you try to observe

the solid earth tides, you are standing on the earth and moving right along with it. As

a result the motion is not readily apparent and cannot be detected without sensitive

instruments. Analogously, you are not aware of ocean tides if you are in the middle of

the ocean — you must be able to observe both the ocean and the land. In fact, the ocean

tides you observe are really the difference between the tidal displacements of the ocean

and the solid earth.

8.1 A Qualitative Description of the Tidal Force

The gravitational force from the sun and moon causes orbital motion of the earth. This

is by far the largest effect of that force on the earth. But this gravitational force also

acts to deform the earth and oceans, and those deformations are the tides. In fact, it is

usual to separate the luni-solar gravitational force into a part that is constant over the

earth and which causes the orbital motion, and a small remainder which causes the tides.

251
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That remainder is called the tidal force.

For example, the total force from, say, the moon is represented by the arrows in

Figure 8.1 (the following description works equally well for the force from the sun). Ω

Ω

Moon

Figure 8.1:

represents the earth’s rotation. Note that the total force at every point is directed toward

the moon, and that the arrows closest to the moon are the largest (the difference in arrow

length is greatly exaggerated in the figure).

The orbital force on the earth is the average of all the arrows. To a high degree of

approximation, the average force equals the force acting at the center of the earth. If we

subtract the arrow at the center of the earth from all the other arrows, we are left with

the tidal force, which is the force that tends to deform the earth (see Figure 8.2). The

tidal force, by its definition, causes no net force on the earth and so does not affect the

earth’s orbital motion.

Note from Figure 8.2, that the force is radially outward on the sides toward and away

from the moon, and is radially inward on the other sides. Looking down from above the

North Pole we get the force pattern shown in Figure 8.3. This pattern remains fixed with

respect to the moon, and the earth rotates relative to it. This causes the tidal force at a

fixed point on the earth to be variable with time. For example, suppose the moon were
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Ω

Moon

Figure 8.2:

Moon

Ω

Figure 8.3:

on the equator, as in Figure 8.4. Every point in the earth would then travel through

two outward bulges and two inward depressions during one day (see Figure 8.5). So,

the frequency of the tidal force as seen from the earth would be Ω/2 = 2 cycles/day,

corresponding to a 12 hour (semi-diurnal) period.

As another example, suppose the moon were above the North Pole, as in Figure 8.6.

Then any point on the earth remains always in the same bulge or depression as the earth

rotates. So, the period in this case would be ∞: there is no time dependence.

As a final example, suppose the moon were inclined at 45◦ to the equator as in
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Ω

Moon

Figure 8.4:

Moon

Ω

Figure 8.5:

Figure 8.7. Consider point A, initially in an outward bulge. After 12 hours that point

has moved to an inward depression (point A’), and after 24 hours it is back where it

started. So the period that this point (or any point in the earth) sees in this case is

1 day, and the frequency = Ω = 1 cycle/day. The tide, in this case, is diurnal. (This

description is a little oversimplified. There is some 12 hour and ∞-period power even at

45◦.)

In reality, the moon is not fixed at any one of these three spots. Instead, it orbits

the earth. So at any given time, depending on where the moon is, you get a linear



8.1. A QUALITATIVE DESCRIPTION OF THE TIDAL FORCE 255

Moon

Ω

Figure 8.6:

Moon

Ω

A’ A

Figure 8.7:

combination of all three frequencies (12 hour, 24 hour, ∞). The moon moves between

±23.5◦ of the equator (with a monthly period), so most of its time is spent at low latitudes

where the 12 hour term is most important. So, the semi-diurnal tides are the largest tides

at most points. The next biggest are the diurnal tides (the moon gets closer to 45◦ than
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to 90◦). The ∞-period terms are the smallest.

Furthermore, because the moon moves in its orbit, these three frequencies are actually

split into three bands of frequencies centered about 0, 1, and 2 cycles per day. These bands

are referred to as the long period, diurnal, and semi-diurnal tidal bands, respectively. The

modulating frequencies vary between 1 cycle/18.6 years and 1 cycle/10 days, and are all

frequencies of the orbital motions of the moon about the earth and of the earth about

the sun. So the long period tides have frequencies between 1 cycle/18.6 years and about

1 cycle/10 days; the diurnal tides between about (1+ 1
10

) cycle/day and (1− 1
10

) cycle/day;

and the semi-diurnal tides between about (2 + 1
10

) cycle/day and (2 − 1
10

) cycle/day.

The most important (largest) modulating frequencies are 1 cycle/year, 2 cycle/year,

1 cycle/month, 2 cycle/month, and 1 cycle/18.6 years.

8.2 Tidal Potential

The tidal force causes displacements in the earth and ocean. These are the earth and

ocean tides. The deformation will, of course, occur at the same frequencies as the tidal

force. But, before discussing the deformation, I want to provide a more qualitative

description of the tidal force. I will do this by defining what is called the tidal potential.

First, we note that the total gravitational potential at a point x in the earth, due to

the moon is:

V (x) =
GM

|x− R|

where R is the position vector of the moon (assumed to be a point mass), and where

M = lunar mass (V = negative of the potential energy, as usual). Assume the origin of

our coordinate system is located at the center of the earth. Let (θ, φ) and (θ′, φ′) be the

spherical angles of x and R, respectively. We can expand 1/|x − R| in terms of Y m
l , as

discussed back in Section 3.3.6, to obtain:

V (r, θ, φ) =
GM4π

R

∞∑

l=0

(
1

2l + 1

) l∑

m=−l

(
r

R

)l
Y m∗
l (θ′, φ′)Y m

l (θ, φ) (8.1)
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where r and R are the radial coordinates of x and R, and where I have used R > r (so

that r> = R, r< = r in the appropriate Section 3.3.6 equation).

The l = 0 term in Equation 8.1 is a constant, independent of (r, θ, φ), and so has no

physical significance (i.e. the gravitational force is the gradient of V , and the gradient of

a constant is zero). This term can be ignored.

The l = 1 terms are proportional to rY m
1 (θ, φ); and this is proportional to z for

m = 0, and to (x ± iy) for m = ±1. (Y 0
1 ≈ cos θ, Y ±1

1 ≈ sin θe±iφ.) The force is the

gradient of V (r, θ, φ). So, for the l = 1 terms the corresponding force is a constant in the

êz direction for m = 0, and a constant in the êx ± iêy “directions” for m = ±1. So, the

l = 1 terms give constant forces throughout the earth. These cause orbital motion but

do not deform the earth.

Furthermore, you can show that for a spherically symmetric earth, the l > 1 terms

in Equation 8.1 cause no net force on the earth, and so do not affect the earth’s orbital

motion. You can infer this by using Equation 8.1 to find
∫

earth
ρ∇V d3x = (net force on

the earth), and showing that only the l = 1 terms contribute to the result. I won’t do

that here.

So, we now define the tidal potential, VT , so that its gradient is the tidal force =

(gravitational force) – (net force on earth). Then VT will be given by Equation 8.1,

except that the sum over l starts at l = 2 instead of at l = 0.

R = mean earth/moon distance ≈ 3.84× 105 km. And, r ≤ earth’s radius = 6.371×
103 km. So, (r/R) ≈ 1/60. So, every time you increase l by 1 in Equation 8.1, you

decrease the corresponding contribution to V by 60. So, to an accuracy of 1 part in

60, we need only consider the l = 2 term (the leading term) in our spherical harmonic

expansion of VT :

VT ≈
GM4π

5R

(
r

R

)2 2∑

m=−2

Y m∗
2 (θ′, φ′)Y m

2 (θ, φ). (8.2)

Occasionally, and depending on the application, people also include the l = 3 terms in

VT . We will not.
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It is also usual to eliminate the negative m contributions by noting that:

Y 0
2 = real

Y m∗
2 (θ′, φ′)Y m

2 (θ, φ) + Y −m∗2 (θ′, φ′)Y −m2 (θ, φ) = 2Re [Y m∗
2 (θ′, φ′)Y m

2 (θ, φ)]

where ‘Re’ = real part, and where we have used Y −m2 = (−1)mY m∗
2 . Then Equation 8.2

reduces to:

VT ≡ Re

[
r2

a2

2∑

m=0

cmY
m∗

2 (θ′, φ′)Y m
2 (θ, φ)

]

where a = earth’s mean radius, and

cm =
GMa2

5R3
4π





1 if m = 0

2 if m = 1, 2.

The quantity cm is a measure of the strength of the tidal potential at the earth’s surface

(where r = a).

There is a similar description for the solar tides. The only approximation we used

here was that r/R � 1, which is an even better approximation for the sun than for

the moon. To get a feeling for whether solar or lunar tides are larger, we note that

Msun/R
3
sun ≈ 0.46(Mmoon/R

3
moon). So, cm for the moon is roughly twice as large as cm for

the sun. So, lunar tides are about twice as large as solar tides.

The quantities R, θ′, and φ′ all depend on time, due to the motion of the moon about

the earth (or of the earth about the sun, for the solar tides). The point x is also moving

in space due to the earth’s rotation. This motion all gets mixed together to produce

the characteristic semi-diurnal, diurnal, and long period tidal bands. Let’s see how this

works.

First, we need to be more precise about our coordinate system. We use a system

that’s fixed to the earth, so that it is rotating with the earth. Then (r, θ, φ), which are

the coordinates of the point x, are fixed, time-independent numbers. Let the êz axis of

the coordinate system be along the rotation axis. Then R and θ′ depend on the lunar

orbit, and φ′ depends on the lunar orbit and on the earth’s rotation. See Figure 8.8.

The angle φ′ (the “mean lunar longitude”) changes both because the moon is moving
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Moon

Ω

ϕ’

e

e

x

y

Figure 8.8:

in space, and because the êx axis is rotating in space:

φ′ = −Ωt + α(t) (8.3)

where α(t) = “moon’s right ascension” is the contribution to φ′ from the lunar motion

in space. (To be technically correct, φ′ in Equation 8.3 should also include a constant,

which depends on our choice for t = 0. That is, the contribution from the earth’s rotation

should really be −Ω(t− t0), where t0 is determined by the angular position of the earth

at t = 0. Here, though, we are absorbing the Ωt0 term into α(t).) Note:

Y m∗
2 (θ′, φ′) = Y m∗

2 (θ′, α)eimΩt.

So:

VT = Re

[
r2

a2

2∑

m=0

cmY
m∗

2 (θ′, α)eimΩtY m
2 (θ, φ)

]
. (8.4)

Here, cm (through R), θ′, and α all depend on time because of the lunar orbital

motion. The periods of each of these three variables are long compared to 1 day.

So, VT separates into three frequency bands, each characterized by a different value

of m:

m = 2: The dominant time dependence is ei2Ωt, so these terms are semi-diurnal (fre-

quencies ≈ 2Ω).
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m = 1: The dominant time dependence is eiΩt, so these terms are diurnal (frequencies

≈ Ω).

m = 0: The eimΩt term = 1, so the time dependence in this case comes entirely from

the c0Y
0

2 (θ′, α) term. These tides are long period.

The factor cmY
m∗

2 (θ′, α) in Equation 8.4 can be expanded as a discrete Fourier series

in time:

cmY
m∗

2 (θ′, α) =
∑

f

Hm(f)ei(ft+φf ) (8.5)

where the sum over f is over all frequencies which contribute to the time dependence,

the Hm(f) are real constants, and the φf are phases. The frequencies, f , are linear

combinations of the frequencies used to describe R, θ′, and α. I won’t bother to find

those frequencies, or the Hm(f). Those are all determined by the orbital motion of the

moon and earth. The frequencies, f , range from 1/18.6 cycles/year to 1/10 cycles/day,

and are all � Ω. So:

VT = Re


r

2

a2

2∑

m=0


∑

f

Hm(f)ei(ωt+φf )


Y m

2 (θ, φ)


 (8.6)

where ω = f+mΩ is close to mΩ. So, there are three disjoint frequency bands, each with

frequencies close to mΩ, and each with a spatial dependence proportional to r2Y m
2 (θ, φ).

8.3 Tidal Response of the Earth

VT consists of a sum of terms of the form

V ′T =
r2

a2
Y m

2 (θ, φ)eiωt (8.7)

where ω ≈ mΩ. Each of these terms causes the earth to deform. If we can model the

earth’s response to each one of these terms individually, then by adding together our

results for the different m’s and ω’s, we can find the response to the total VT . That

follows because the differential equation that describes the deformation is linear.

To find the deformation caused by one of these V ′T terms, we start by labeling each

particle inside the earth using the position vector, x, the particle would occupy if there



8.3. TIDAL RESPONSE OF THE EARTH 261

were no tides. Let s(x, t) denote the time-dependent displacement of the point at x.

The differential equation for s(x, t) comes from Newton’s Second Law of Motion (F =

ma), and has the form: ρ∂2
t s = (internally-generated forces) + ρ∇V ′T where “(internally-

generated forces)” includes the effects of internal stresses (∇· ↔τ ) and of gravitational

self-interaction. The details of the differential equation are complicated and so I won’t

show them here. But, in the frequency domain (where ∂t → −ω2), the equation has the

form:

−ρω2s = H · s+ ρ∇V ′T (8.8)

where H is a complicated differential operator. The solution must also satisfy traction-

free boundary conditions at the outer surface:

n̂· ↔τ
∣∣∣
surface

= 0. (8.9)

Note that
↔
τ must be written in terms of s, to obtain boundary conditions on s. (There

are other boundary conditions that must be satisfied, but that are not given here, that

involve the continuity of the gravitational potential and of its radial derivative across

the outer surface.) Remember that ω and V ′T are the tidal frequency and tidal potential,

respectively, and are known quantities in this problem.

Incidentally, the differential equation (Equation 8.8) and the boundary condition

(Equation 8.9) are also used to find the earth’s seismic free oscillations, except that for

the free oscillations V ′T = 0. In that case the differential equation is homogeneous, and

so will have non-zero solutions for s only for certain values of ω: values where ω2 is an

eigenvalue of the operator −H/ρ. In that case, ω is the free oscillation eigenfrequency

and s is the eigenfunction. Seismologists are usually more interested in ω than in s.

For the tidal case VT 6= 0, and the resulting inhomogeneous equation has a unique,

non-zero solution for any ω. Actually, that’s not quite true. Problems would arise if

ω = free oscillation eigenfrequency, since then the sun and moon would be forcing at

a resonance period of the earth. Luckily, the tidal frequencies ω do not coincide with

any free oscillation frequencies. The shortest tidal periods we are considering here are

close to 12 hours (though there are l = 3 and l = 4 terms at 8-hour and 6-hour periods,
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respectively), whereas the longest free oscillation periods are less than one hour.

The easiest way to solve the differential equation is to expand s as a sum of spherical

harmonics, Y m
l . Except that because s is a vector, not a scalar, it must be expanded in

terms of vector spherical harmonics:

r̂Y m
l (θ, φ), ∇Y m

l (θ, φ), r̂ ×∇Y m
l (θ, φ). (8.10)

There are three vector spherical harmonics for each (l, m) because a vector has three

components. It turns out that any vector field can be expanded in terms of these functions

(just as any scalar field can be expanded in terms of the scalar Y m
l (θ, φ)’s), where the

expansion coefficients are functions of r. So:

s =
∑

l,m

[
s1
lm(r)r̂Y m

l (θ, φ) + s2
lm(r)∇Y m

l (θ, φ) + s3
lm(r)r̂ ×∇Y m

l (θ, φ)
]
.

The idea is to put this expansion for s into the differential equation and the boundary

conditions, and then to solve for the silm(r). The resulting differential equations for silm(r)

will be ordinary differential equations with r as the independent variable. (This method

is also used to find free oscillations.)

The reason that a spherical harmonic expansion is useful for this problem, is that to

a first approximation the earth is spherically symmetric and non-rotating. Earth tides

(and free oscillations) computed for a spherical, non-rotating earth model turn out to be

pretty accurate (I’ll mention, later, what happens when rotation and ellipticity — the

most important departure from spherical symmetry — are included in the tidal model.)

And for a spherical, non-rotating earth model, vector spherical harmonics separate the

differential equation and boundary conditions. That is, H acting on any one of the three

harmonics in Equation 8.10, gives a result that has an angular dependence that can be

described by harmonics with the same (l, m) values.

More specifically, H acting on s1
lmr̂Y

m
l gives a result that can be written as a linear

combination of r̂Y m
l and ∇Y m

l , where the coefficients depend on r and are related to

s1
lm(r) (they are either radial derivatives of s1

lm(r), or simple multiplication). The result

has no Y m′
l′ dependence for l′ 6= l or m′ 6= m, and, in fact, no r̂ ×∇Y m

l dependence.



8.3. TIDAL RESPONSE OF THE EARTH 263

Similarly, H acting on s2
lm(r)∇Y m

l gives r̂Y m
l and ∇Y m

l terms. And, H acting on

s3
lm(r)r̂ ×∇Y m

l gives only a r̂ ×∇Y m
l term.

This separation should not be surprising. You undoubtedly encountered situations

when studying electricity/magnetism or quantum mechanics, where you found that Y m
l ’s

separated spherically symmetric, scalar differential equations. Vector problems are no

different.

The implication of this separation for tides is useful. Note that V ′T is proportional to

r2Y m
2 , so that:

∇V ′T ∝
2

r
r̂Y m

2 + r2∇Y m
2 .

So, the forcing term in the differential equation can be written as a sum of two vector

spherical harmonics, both with l = 2. If you trace back through the discussion of what H

does to vector spherical harmonics, you will see that the only coefficients in the expansion

for the tidal solution s which are non-zero, are s1
2m(r) and s2

2m(r), so that:

s = s1
2m(r)r̂Y m

2 (θ, φ) + s2
2m(r)∇Y m

2 (θ, φ).

So, it takes only two radially-dependent functions to describe tides for a spherically

symmetric earth.

Incidentally, the fact that spherical harmonics separate the equations, is also im-

portant for seismic free oscillations. It implies that a free oscillation eigenfunction is

described by harmonics with a single (l, m). There may, of course, be lots of differ-

ent eigenfunctions for that single (l, m). This result is analogous to the result for the

hydrogen atom eigenfunctions in quantum mechanics: each eigenfunction has a single

(l, m), but you need a third index, n, to label the different eigenfunctions corresponding

to a given (l, m). For seismic free oscillations you get a further separation between the

r̂Y m
l ,∇Y m

l solutions, and the r̂×∇Y m
l solution. A free oscillation eigenfunction is either

described by a r̂×∇Y m
l term, in which case it is called a toroidal free oscillation; or it’s

described by r̂Y m
l and ∇Y m

l terms, in which case it is called a spheroidal free oscillation.

But, to get back to the tidal solution, note that s1
2m(r) represents radial displacements,

and s2
2m(r) represents horizontal displacements (∇Y m

l is in the êθ and êφ directions). You
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can only observe displacements at the earth’s outer surface: r = a. So, you only observe

s1
2m(a) and s2

2m(a). And that implies that for a given m and ω, you need only model

and/or measure two numbers to describe displacements: s1
2m(a) and s2

2m(a). It is usual

to define two Love numbers, h and l, which are non-dimensional normalizations of s1
2m(a)

and s2
2m(a). Specifically, suppose V ′T = (r/a)2Y m

2 (θ, φ)eiωt. Then, h and l are defined so

that at the outer surface (where r = a):

radial displacement: sr(a) =
h

g
Y m

2 (θ, φ)eiωt =
h

g
V ′T (r = a)

southward: sθ(a) =
l

g
∂θY

m
2 (θ, φ)eiωt =

l

g
∂θV

′
T (r = a)

eastward: sφ(a) =
l

g sin θ
∂φY

m
2 eiωt =

l

g sin θ
∂φV

′
T (r = a)

where g is the gravitational acceleration at the earth’s surface.

It turns out you need to define a third Love number, k, to describe gravity ob-

servations. Once you know s(x, t) everywhere inside the earth, you can compute the

perturbation in the earth’s gravity field caused by s (s represents deformation — and

so can be used to find the perturbation in the earth’s density distribution). We define

φ(x, t) as the perturbation in the earth’s gravitational potential. φ is a scalar, so it can

be expanded in terms of scalar Y m
l (θ, φ)’s. It turns out that whenever s can be written

as a sum of r̂Y m
2 and ∇Y m

2 for a fixed value of m, then φ is proportional to Y m
2 , with the

same value of m:

φ(x, t) = φ(r)Y m
2 (θ, φ)eiωt.

We thus define a third dimensionless Love number k, so that when V ′T = (r/a)2Y m
2 (θ, φ):

φ(r = a, t) = kY m
2 (θ, φ)eiωt = kV ′T (r = a). (8.11)

All tidal observations can be described with linear combinations of the three numbers

h, l and k. (As an example, I will describe the tidal signal in surface gravity in the follow-

ing section.) You might expect that the Love numbers would depend on m and ω. But it

turns out that for a spherical, non-rotating earth, the numbers are totally independent of
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m (analogous to the result for the hydrogen atom that the radial eigenfunctions are in-

dependent of m) and are nearly the same at all tidal frequencies. So, you can completely

describe the earth tides with just three numbers — valid (approximately) for all m and

ω. You can determine these numbers from observations, and then compare with results

obtained by solving the differential equation, to try to constrain, for example, models of

the material properties (ρ, µ, λ) in the earth’s interior.

Although people have used tidal observations to learn about the earth’s interior (see

the discussion below), tides have not turned out to be as useful as people had originally

hoped — at least for learning about the earth’s material properties. There are a number

of reasons for this. The most obvious is that tidal observations can provide, at most, only

three observational constraints: h, k and l. By comparison, over 1000 degenerate free

oscillation frequencies have been cataloged, along with countless body- and surface-wave

observations, and these have proven far more useful than tides for learning about the

earth’s material properties.

On the other hand, tides occur at longer periods than do seismic disturbances. Anelas-

ticity in the mantle is apt to cause the apparent µ and λ to depend on frequency. Thus,

tides offer the possibility of constraining that frequency dependence, and thus learning

about anelasticity. So far, ocean loading uncertainties (see below) and other errors have

limited what tidal observations have been able to say about anelasticity. But, recent

improvements in ocean tide models, that use, for example, satellite altimeter data, may

eventually overcome this problem.

It is useful to be able to understand and model earth tides for another reason. Namely,

tidal signals in such things as tilt, strain, surface displacements, and surface and satellite

gravity, can be very large, and, if not removed, can easily obscure other signals that

people might be interested in.

8.3.1 An Example: Surface Gravity Tides

I claimed above that every tidal observation can be written as a linear combination of

Love numbers. As an example, consider the tidal effect on gravitational acceleration as
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measured by a gravimeter placed on the earth’s surface. The meter records a change in

gravity if:

1. there is a change in the gravitational potential; or

2. the surface is displaced vertically through the earth’s original gravitational field.

Let’s consider these two contributions separately.

1. The gravitational acceleration at any fixed point in space is g (positive downwards)

= −∂rV ′ where V ′ = the gravitational potential. We are interested in the tidal

contributions to V ′. There are two such contributions. One, VT , comes from the

direct attraction of the sun and moon. The other, φ, is caused by tidal perturbations

of the earth’s internal mass distribution.

We consider the contribution from VT , first. Since we are only including the l = 2

terms in our spherical harmonic expansion of VT , the radial dependence of VT is r2

— see, for example, Equation 8.6. Thus, the effect on g at the outer surface (where

r = a), is:

∆g = − ∂rVT |r=a = −2

a
VT

∣∣∣∣
r=a

Next, we include the contribution from φ. Consider any one of the
(
r
a

)2
Y m

2 (θ, φ)eiωt

terms in VT (see Equation 8.6). These terms cause tidal displacements in the earth,

which lead to changes in the earth’s internal mass distribution. The gravitational

potential at the surface of the earth caused by this mass redistribution, is:

φ|r=a = kY m
2 (θ, φ)eiωt. (8.12)

(see Equation 8.11). To find the radial derivative of this potential, we need to

know φ(r) for r ≥ a. (The gravimeter sits outside the earth, where r ≥ a.) That’s

a boundary value problem: solve ∇2φ = 0 for r > a, where φ|r=a is given by

Equation 8.12. The solution that is bounded at r =∞ is:

φ = k
(
a

r

)3

Y m
2 (θ, φ)eiωt for r ≥ a
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where we have used the result that the radial dependence of a Y m
l solution to

Laplace’s equation, is r−(l+1). So, outside the earth:

−∂rφ =
3

r
φ.

So, at r = a:

∆g = −∂rφ|r=a =
3

a
φ
∣∣∣∣
r=a

=
3

a
kVT

∣∣∣∣
r=a

So, the total contribution to ∆g caused by VT and φ, is:

∆g =
[
−2

a
+

3

a
k
]
VT |r=a .

2. The unperturbed gravitational acceleration outside the earth is g(r) = GM/r2.

The tidal force causes the outer surface to be displaced vertically by the distance

(h/g) VT |r=a. So, the perturbation in g as observed by the gravimeter, is:

∆g =
h

g
VT

∣∣∣∣∣
r=a

∂rg0|r=a = (
h

g
VT |r=a)(−

2

a
g) = −2

a
h VT |r=a .

So, adding the contributions from 1 and 2 gives the total tidal gravity signal recorded at

the gravimeter:

∆g = −2

a

[
1− 3

2
k + h

]
VT |r=a .

The factor 1− 3
2
k + h is called the gravimetric factor, and is written as:

δ ≡ 1− 3

2
k + h.

Then:

∆g = −δ 2

a
VT |r=a .
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8.3.2 Numerical Results

Typical results (models and observations agree pretty well) are:

h ≈ 0.6

l ≈ 0.085

k ≈ 0.3

δ ≈ 1.16.

Notice:

• h > l, implying that there is more vertical motion than horizontal motion at most

locations;

• δ is close to 1, which is the value of δ you would obtain for a rigid earth. This

implies that the gravitational effects of the vertical displacement nearly cancel the

effects of the perturbation in the earth’s gravity field.

You can go through a similar exercise relating tilt and strain to the Love numbers. I

won’t do that. Typical effects of tides on various measurement types are:

gravity ≈ 60 µgal

strain ≈ 10−8
(
strain = change in length

length

)

tilt ≈ 40 msec of arc

surface displacements ≤ 1 meter.

8.3.3 What the simple model ignores.

What are the other reasons (besides “only three constraints”) that have made it hard to

learn about the earth’s deep interior from tidal observations? Or, in other words, what

have we ignored in the simple model above that can affect tidal observations? Here is a

partial list:
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8.3.3.1 The Oceans

The tidal force, of course, also causes ocean tides. The ocean tides act on the underlying

solid earth and deform it. They force the solid earth in two ways:

1. They cause pressure at the surface of the earth: positive pressure at high tide,

negative pressure at low tide.

2. The excess water mass at high tide (and the decreased water mass at low tide) acts

gravitationally on the earth.

The induced deformation of the solid earth is called the ocean load tide. It occurs

at the same frequencies as does the solid earth tide, since they are both caused by the

same tidal forcing from the sun and moon. The effects of the load tide on gravity and on

surface motion are typically 5%, or so, of the effects of the solid earth tide. The effects on

tilt and strain, though, can be 100% or more of the body tide effects if the instruments

are near the coast.

Thus, to learn about the solid earth from observations of the body tide, you must

first somehow model and remove the effects of the ocean load tide. This is a two step

process.

First, you must have a model for the global ocean tide. The ocean tide models based

on TOPEX/POSEIDON are likely to prove very useful for these sorts of applications.

Prior to satellite altimetry, all ocean tide models were constructed by solving differential

equations for the ocean, sometimes using tide gauge data as constraints.

Second, you must construct a geophysical model to predict the earth’s response to

surface loading. This is done by solving differential equations for the earth which are

identical to the body tide differential equations described above. Except that in this case

n̂· ↔τ 6= 0 at the outer surface, because there is a non-zero surface traction caused by the

load. These models allow you to compute load Green’s functions, which describe the

deformation of the earth caused by a point load on the surface. The Green’s functions

can then be convolved with an ocean tide model to predict the total oceanic loading.
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Most of the uncertainty in this process comes from uncertainties in the ocean tide

model. Previous to the TOPEX/POSEIDON ocean tide models becoming available,

people could probably model the load tide on any observable to approximately 10%.

That corresponds to a ≈0.5% error in the gravity body tide observations, which is pretty

large compared with uncertainties in the properties of the earth’s deep interior. The

TOPEX/POSEIDON models are not accurate enough that the ocean loading problem

will disappear. But, they should result in enough of an improvement in the ocean load

corrections to allow earth tide observations to give much better determinations of several

quantities, including the shape of the fluid core, frictional processes in the solid mantle,

and dissipative coupling between the fluid core and solid mantle.

8.3.3.2 Local Effects

Tilt and strain tidal amplitudes can be very sensitive to local things, like topography,

geology, and even the shape of the hole in the ground that you put your meter in.

(You often place strainmeters and tiltmeters underground to get them away from even

more serious surface environmental effects: such as fluctuations in atmospheric pressure,

temperature, ground water, etc.) To learn about the earth’s deep interior you must

model all these local effects, and that can be difficult. On the other hand, if you can

remove the effects of the global body tide on your observations by using global models,

then you might be able to use the residuals to learn about the local effects; specifically,

to learn about the local geological structure. This is one application where tides have

proven useful.

8.3.3.3 Effects of rotation and ellipticity

For a rotating, elliptical earth the Y m
l do not exactly separate the differential equations.

For example, a Y m
2 term in the tidal potential causes a displacement field, s, that has

contributions from Y m
l with l 6= 2. This effect on tidal observations is relatively small.

It affects things at about the 1/300 level, which is the size of the earth’s ellipticity, and

of the ratio of the centrifugal force to the gravitational force.
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Instead, the most important effect of rotation and ellipticity is to introduce significant

frequency dependence into the Love numbers h, k and l. It causes the Love numbers to

be resonant in the diurnal band. The resonance is caused by a normal mode of the

earth with a period of 1 − 1/n days. This mode involves a relative rotation between

the core and mantle, and “n” depends on the shape of the core/mantle boundary. For a

hydrostatic shape, n ≈ 460. People have looked for this resonance effect in the amplitudes

of diurnal earth tides (the resonance also shows up in earth rotation observations — see

Section 9.5, below), and have concluded that n is probably closer to 430. This has been

used to constrain the non-hydrostatic core/mantle boundary shape.

There is also an observed phase lag between the earth tides and the tidal potential

that is associated with the core-mantle rotational resonance in the tides. The size of this

phase lag has implications for core-mantle dissipative processes.



272 CHAPTER 8. EARTH TIDES



Chapter 9

Earth Rotation

The earth does not rotate at a constant rate about a fixed axis. Instead:

• The rotation rate is variable.

• The rotation axis moves.

Consider the observational consequences of these two things, one at a time.

9.1 Variable Rotation Rate

A variable rotation rate is often referred to in terms of its effect on the length of a day

(lod). For example, an increase in the rotation rate causes a decrease in the lod. Back

in Chapter 2, I described how ∆lod (the change in the lod) is observed. Until 20 years

or so ago, the method was to record the transit times of stars. Today, people use VLBI,

LLR, LAGEOS, and GPS observations, instead.

Until the advent of atomic clocks, people kept time by watching the stars. For exam-

ple, every time star A was overhead, you might say it was 1:00 AM. The time determined

this way is called Universal Time (UT). Or, to be more precise, UT is the time at Green-

wich, England, determined in this manner.

When atomic clocks were developed in the 1950’s, people found that UT didn’t agree

with atomic clock time (AT). You expect AT to be regular, in the sense that AT should

273
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be equal to the quantity t that enters into the classical dynamical equations of physics.

The inference, then, is that UT is not constant. Or, in other words, that the earth’s

rotation rate varies with time. As an alternative to using ∆lod, people often refer to

variations in rotation rate in terms of the accompanying effects on UT: defined as δUT.

I want to find the relations between δUT, ∆lod, and the change in the earth’s rotation

rate. UT can be determined from the transit times of objects in space; including stars,

quasars, and artificial satellites. Because UT is observed to vary with respect to AT, we

write UT = UT(t), where t is atomic time. Let Ω(t) be the angular velocity of rotation

for the earth, so that Ω has units of rad/sec. We choose some arbitrary orientation of

the earth as the initial epoch of UT. Suppose we are trying to determine UT by using a

telescope to observe the locations of stars. We define φ(t) as the angle swept out by the

telescope after time t. This angle is illustrated in Figure 9.1, where we are looking down

on the earth from above the North Pole.

Ω

ϕ

telescope at t=0

telescope

Figure 9.1:

The rotation rate is the time derivative of φ:

dφ

dt
= Ω(t)

or:

φ(t) =
∫ t

0
Ω(t′) dt′.

UT is defined by assuming (erroneously) that the earth is rotating at a constant rate of

1 revolution per 24 hours, so that Ω0×UT = φ, where Ω0 is the average value of Ω(t) (Ω0
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= constant). So:

UT(t) =
1

Ω0

∫ t

0
Ω(t′) dt′.

Write Ω(t) = Ω0 + δΩ(t), where δΩ(t) represents the variability in rotation rate. Then

the variability in UT is:

δUT(t) =
1

Ω0

∫ t

0
δΩ(t′) dt′.

So if you observe δUT(t), then you can determine

δΩ(t) = Ω0
d

dt
δUT(t).

Once you know δΩ(t), you can determine ∆lod. The rotation rate, Ω = Ω0 + δΩ, is

the number of radians per second subtended by the earth. The number of seconds per

radian is then 1/(Ω0 + δΩ). The number of seconds per revolution is defined as the lod.

So:

lod ≈ 2π

Ω0 + δΩ
≈ 2π

Ω0

[
1− δΩ

Ω0

]

assuming δΩ/Ω0 � 1. So, the change in the lod is:

∆lod(t) = −
(

2π

Ω0

)(
δΩ(t)

Ω0

)

where 2π/Ω0 = lod0 = number of seconds per day if there were no variation in rotation

rate. So:
∆lod

lod0

= −δΩ(t)

Ω0

. (9.1)

9.2 Motion of the Rotation Axis

The rotation axis can undergo two types of motion.

1. The axis can move with respect to inertial space (as determined by the apparent

positions of stars). This sort of motion is called precession and nutation.

2. The axis can move with respect to the earth. Imagine going to the North Pole and

putting a stake in the ground. If you then stand back and watch the rotation axis,

you discover that it moves with respect to the stake. You call this sort of motion
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polar motion. It looks as though the rotation axis is moving, but actually that axis

does not move much in inertial space. Instead, it is the earth (i.e. the stake) that

moves. The earth can be described as wobbling about the rotation axis. For this

reason, polar motion is sometimes also referred to as wobble.

Whenever there is nutation there is also wobble, and vice versa. For example, if the

rotation axis moves in inertial space (i.e. if there is nutation), then the earth-fixed axis

must also move in inertial space, since the rotation axis is the rotation axis of the earth.

But, the earth-fixed axis won’t move in quite the same way as the rotation axis, so there

is relative motion between the two axes. This is wobble.

Still, it is useful to differentiate, conceptually, between nutation and wobble. Neither

of them is directly measured with any technique. Instead, what is observed (by watching

stars or satellites or the moon or quasars) is the inertial space motion of the earth-fixed

axis. You never directly observe the rotation axis — and both wobble and nutation

refer to motion of the rotation axis. Nevertheless, once you determine the motion of the

earth-fixed axis, you can calculate the motion of the rotation axis.

What you find when you do all this is that you can characterize the motion as either

mainly nutation or mainly wobble, depending on the frequency of the motion. If the

earth-fixed axis moves at periods long compared to 1 day as seen from inertial space,

then the motion is mainly a nutation: the rotation axis moves in inertial space but

remains nearly coincident with the earth-fixed axis. If the earth-fixed axis moves around

approximately diurnally, as seen from inertial space, then the motion is mainly wobble:

the rotation axis doesn’t move much in inertial space, but the earth-fixed axis does. I

will not show this here.

If the motion occurs at some other period, you can’t usefully identify it as either

wobble or nutation. It will be a combination of the two. As it happens, though, little

significant motion has been observed at other periods. That’s evidently because there are

few processes which can efficiently excite motion at other periods. Long-period inertial

space motion (nutation) is excited by the gravitational attraction of the sun and moon.

(The motion of the sun and moon in inertial space is long period.) And, diurnal inertial
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space motion is excited by processes that occur on and within the earth (changes in

winds, or atmospheric pressure, or ocean currents, or fluid flow in the core, etc.). These

processes involve slow changes with respect to the earth. Thus, since the earth is rotating,

these processes appear to vary diurnally as seen from inertial space.

This leads to another point. Motion which is long period as seen from inertial space

is approximately diurnal as seen from earth. And, motion that is diurnal as seen from

space is long period as seen from the earth (at least it is if the motion as seen from space

is prograde: in the same direction as the earth’s rotation; and wobble is prograde). For

example, during wobble the earth-fixed axis moves around diurnally in inertial space —

and it moves in the same sense as the earth’s rotation. So, the axis moves slowly with

respect to points fixed in the earth, and thus the motion is long period as seen from the

earth.

It is the period with respect to the earth that you should remember:

wobble = long period

nutation = diurnal.

Let’s discuss these things (∆lod, precession/nutation, wobble) in more detail.

9.3 Changes in the lod

There are variations in the lod at many different time scales.

• First, there is a linear increase in the lod of 1–2 msec/century (1 day = 86,400 sec,

so 1 msec ∼= one part in 108).

• Second, there are irregular “decadal fluctuations” of 4–5 msec over 20–30 years.

• Third, there are variations of 2–3 msec at periods of less than 5 years. Most of this

short-period variability occurs at distinct periods: 2 weeks, 1 month, 6 months,

1 year.
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9.3.1 Linear change in the lod

You can’t separate the linear change from the decadal fluctuations unless you have a

data span that is significantly longer than a century. The way to obtain such a long data

record is to use ancient Greek, Babylonian, etc., eclipse data. You note the recorded

time of day when the eclipse occurred. You then compare with what you predict, given

the present positions of the sun and moon together with the present-day rotation rate.

The discrepancy is a measure of the integrated change in rotation rate since the time the

eclipse occurred. Specifically, you find the change in UT between the time of the eclipse

(t = t1) and the present-day (t = t2):

δUT =
1

Ω0

∫ t2

t1
δΩ(t′) dt′.

For a linear change in rotation rate: δΩ = −δΩ̇t, where δΩ̇ = constant. (I have inserted

a negative sign into this equation for δΩ, because then δΩ̇ > 0: i.e. a linear increase in

the lod implies that δΩ < 0.) So:

δUT = −δΩ̇
Ω0

t22 − t21
2

.

Equation 9.1 implies that:

−δΩ̇
Ω0

=
∂t(∆lod)

lod0

≈ 2 msec/century

86, 400 sec

= 2× 10−8/century.

So, after one century:

δUT =

(
2× 10−8

century

)
× 1

2
century2 = 10−8 century ≈ 30 seconds.

After 2000 years:

δUT =

(
2× 10−8

century

)
× 400

2
century2 ≈ 3.3 hours.

This means that an eclipse 2000 years ago would have occurred 3.3 hours earlier (as

measured by looking at, for example, the sun or moon) than would be predicted using
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today’s rotation rate to extrapolate backward in time. A discrepancy this large would

be clearly evident in the ancient eclipse data.

People also have used planetary occultation data (for example, when a planet dis-

appears behind the sun) from the 1600’s and later, to look for lod fluctuations. There

the record is more precise, but the secular change in UT is not as large. For example,

after 400 years: δUT ≈ 8 minutes. The ancient data is thus more useful for inferring the

secular increase in the lod.

Most of the secular change in the lod is due to tidal friction in the earth and oceans.

The moon (for example) causes a tidal bulge in the earth and oceans, which is oriented

towards the moon. If there was no energy dissipation, the bulge would be oriented exactly

towards the moon. But, because there is dissipation, the earth and oceans take a short

time to fully respond to the tidal force. The maximum uplift of the surface occurs a short

time after the moon is overhead, and so the tidal bulge leads the earth-moon vector by

the angle λ (shown greatly exaggerated in Figure 9.2). The angle λ is about 0.4 degrees,

corresponding to about a 10 minute lag time in the earth. The moon’s gravitational force

Moon
Ω

λ

tidal bulge

torque on earth

Figure 9.2:

can then act on this bulge to torque the earth in a direction opposite to the rotation.

Thus the earth slows down, and so the lod increases. If you break the tidal force into its

individual tidal constituents (i.e. the eiωt terms in Equation 8.6), you find that all the
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diurnal and semi-diurnal terms contribute to the torque, but that the lunar semi-diurnal

terms contribute the most. About 80% of the dissipation comes from the lunar tides; the

remaining 20% is from the solar tides.

Incidentally, a similar process presumably occurred on the moon in the past. Dissi-

pation of tidal energy in the moon (the tides in that case are caused primarily by the

earth) slowed the moon’s rotation, so that now the moon always keeps the same side to

the earth.

But, returning to the earth: Most of the energy dissipation in the earth occurs in

the oceans, rather than in the solid earth. That is, it is mostly the tidal bulge in the

oceans that leads the earth-moon vector. This is because frictional effects are simply

more important in the oceans than in the earth. Ocean tide models now do a pretty

good job of reproducing the dissipation required by the lod observations.

You can independently determine the lag angle, λ, using satellite ranging data, since

the tidal bulge affects satellite orbits. Once you know λ you can predict the decrease in

rotation rate. What you find is that the earth should be slowing down by about 25%

more than the value inferred from the ancient eclipse data.

And there’s still another, and even better, way to obtain an estimate of the effects

of tidal friction. The earth’s tidal bulge acts gravitationally on the moon and causes

it to accelerate in the direction of the earth’s rotation (counter-clockwise in Figure 9.2,

above). This can also be understood in terms of the conservation of angular momentum.

If the earth loses angular momentum due to its decreasing rotation, the moon must gain

an equal amount of angular momentum, through changes in its orbit. What you find is

that the moon moves further away from the earth and increases its orbital period about

the earth.

People have determined the increase in orbital period using LLR data. It’s easier

to detect that than to detect the increase in the orbital radius, because an offset in the

orbital period builds up over many orbits to give a large change in the lunar position.

The results are then used to estimate the decrease in the earth’s rotation rate. The result

obtained in this manner is consistent with the satellite estimates of λ: the effect of tidal
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friction is about 25% larger than the secular change inferred using the ancient eclipse

data.

Incidentally, if you use the LLR and satellite results — or even the eclipse results —

to extrapolate backwards in time, you conclude that the moon was so close to the earth

1.5 billion years ago that it would have been torn apart by gravitational tidal forces from

the earth. Yet the moon is known to be at least 4 billion years old. The explanation is

that the current oceanic dissipation rates are apparently anomalously large. The oceanic

dissipation depends, among other things, on the shape of the ocean basins. And the

basins have changed with time due to continental drift.

Anyway, although the 25% discrepancy could simply be the result of noisy ancient

eclipse data, it is generally believed to be real. It implies that there is some other

mechanism causing the earth’s rotation rate to increase secularly with time. It is likely

that this increase in rotation rate is caused by a decrease in the earth’s moment of inertia.

The situation is similar to a spinning figure skater raising her hands over her head. This

decreases her moment of inertia, and so she spins faster to conserve angular momentum.

The reason people believe that the 25% discrepancy is real and is due to a decrease

in the moment of inertia, is that this interpretation is consistent with the LAGEOS J̇2

results. The geoid coefficient J2 is related to the earth’s polar moment of inertia. So

the LAGEOS J̇2 observations can be used to directly infer the secular change in the lod,

due to the re-distribution of mass in or on the earth. And the results predict an increase

in the lod that is consistent with the 25% discrepancy between the eclipse data and the

effects of tidal friction.

What is causing this secular change in the moment of inertia? Or, equivalently, what

is causing the observed change in J2? As described in Section 7.5, the result has been

interpreted as due to postglacial rebound. But it may also partially reflect on-going

changes in the mass of the polar ice caps (Antarctica and Greenland). In fact, it is likely

that there are significant contributions from both these (and other) mechanisms.
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9.3.2 Decadal Fluctuations in the lod

The decadal fluctuations are believed to be due to the transfer of angular momentum

between the core and the mantle. If, for example, the core loses angular momentum,

then the mantle must gain angular momentum in order to conserve the total angular

momentum of the earth. This would cause the rotation rate of the mantle to increase,

so that the observed lod decreases.

This suggests that there might be a correlation between the decadal lod fluctuations

and decadal variations in the magnetic field. The situation, though, is complicated by the

fact that magnetic field variations generated in the core will be attenuated and delayed

as they pass up through the conducting mantle. So, the time dependence of the magnetic

field at the outer surface may not look too much like the time dependence of the magnetic

field at the top of the core. And, it is the field in the core that ought to be correlated

with the fluid velocity.

On the other hand, suppose you assume the lod time dependence does look like

the time dependence of the magnetic field at the top of the core. And suppose you can

somehow identify the corresponding time-dependent signal in the magnetic field observed

at the outer surface. You are then in a position to compare the time signature of the

magnetic field at the outer surface, with that of the magnetic field at the top of the

core (as inferred from the lod data), and this tells you something about the conductivity

of the intervening mantle. People have used this approach to place bounds on mantle

conductivity.

This, though, tells you nothing about the change in angular momentum of the core,

and whether it could be large enough to explain the lod fluctuations. Recently there has

been some significant progress on that problem. Estimates of fluid flow at the top of

the core can be made from surface magnetic field data. Those estimates have been used,

together with assumptions about how the fluid flow inside the core might be organized, to

obtain estimates for the change of core angular momentum. The agreement with the lod

data is remarkably good. At the very least, the results suggest that the core is, indeed,

the likely source of excitation for the decade-scale fluctuations.
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As for the core-mantle coupling mechanism responsible for this exchange of angular

momentum, there is as yet no consensus. One possible source of the coupling is fluid

pressure acting against topography on the core-mantle boundary. Another possibility is

electro-magnetic forcing. The idea there is that the earth’s magnetic field is caused by

currents in the core. If the currents change with time, the field will change. The mantle

is an electrical conductor, so the changes in the magnetic field induce currents in the

mantle. These currents interact with the original magnetic field from the core, through

the Lorentz Force, and the result can be a rotation of the mantle. It may be that both

topographic and electro-magnetic coupling are important.

9.3.3 Short period lod fluctuations

There are a variety of lod fluctuations at periods of a few years and shorter, that are due

to: earth and ocean tides; the atmosphere; and, to a lesser extent, wind-driven oceanic

circulation.

First, there are variations in the lod at monthly and fortnightly periods. The ampli-

tudes at these periods are approximately 0.2 to 0.3 msec. These are caused by the long

period tides. The l = 2, m = 0 tidal deformation leads to a change in the earth’s polar

moment of inertia. But there is no net torque on the earth about the polar axis, and

so there can be no change in polar angular momentum. Thus, the change in moment of

inertia must be accompanied by a change in rotation rate.

It is not hard to understand why this variability occurs only at long periods, and not

at diurnal or semi-diurnal periods. The polar moment of inertia varies as mass moves

toward or away from the poles. So, it is sensitive to the orientation of the tidal bulge with

respect to the equator. See Figure 9.3. That orientation is determined by the position of

the moon (and sun) with respect to the equator. And so it varies only with the moon’s

orbital motion. It does not vary with the earth’s rotational period. Thus, it is only the

long period tides which can affect the rotation rate.

To model these variations in rotation, you must compute the tidal variations in the

earth’s moment of inertia. This means that you must model the long period earth tides.
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Figure 9.3:

You must also model the long period — monthly and fortnightly — ocean tides, since they,

also, will contribute to the moment of inertia. The ocean tide effects are approximately

10% of the earth tide effects.

People have obtained good agreement between theory and observations of these lod

terms. They have used the results to estimate the effects of mantle anelasticity at the

fortnightly and monthly periods.
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Long period tidal variations in lod occur at all long period tidal frequencies — not

just at the monthly and fortnightly frequencies. But there are only four frequencies

where the effects are large enough to be observable: fortnightly, monthly, 6 months,

12 months. (There is also a reasonably large effect at 18.6 years, but it is overwhelmed

by the decadal fluctuation signal.) The problem at 6 months and 1 year is that there

are even larger effects at those periods due to atmospheric and oceanic perturbations.

The tidal deformation mechanism accounts for only 10% of the annual and 30% of the

semi-annual variability. About 5% of the annual and semi-annual variability comes from

seasonal variations in ocean currents — most of that from variations in the circum-polar

current around Antarctica. When that current weakens, for example, it loses angular

momentum to the earth, and that lost angular momentum shows up as a change in the

earth’s rotation rate.

But, most of the 6 month and 1 year variability is caused by seasonal atmospheric

forcing: particularly, the exchange of angular momentum between the solid earth and

atmospheric winds at seasonal periods. For example, when the winds increase in strength

from west to east, the earth slows down. This exchange of angular momentum is caused

by a combination of surface friction torques (due to viscous drag as the winds blow over

the surface) and mountain torques (caused by higher pressure on one side of a topographic

feature than on the other — although you can also think of it as the force caused by

winds blowing against mountains). The friction and mountain torques contribute about

equally to the seasonal coupling.

Variations in atmospheric pressure contribute about 10% of the 6 month and 1 year

lod amplitudes, so they contribute maybe 1/6 to 1/7 of the effects of winds. Here’s a way

to understand how changes in atmospheric pressure are related to changes in the lod:

A change in pressure means there is a change in the total atmospheric mass above

that point. So, with enough pressure data, it is possible to determine variations in

the atmosphere’s moment of inertia. Because of conservation of angular momentum of

the combined earth + atmosphere ( + oceans), seasonal variations in the atmosphere’s

moment of inertia cause variations in the lod. (Incidentally, why don’t variations in the
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atmosphere’s moment of inertia cause variations in the atmosphere’s rotation, instead

of in the rotation of the solid earth? Well, they might. In that case, you would have

added an effect to the predicted lod which isn’t really there. But, presumably, you would

take that effect out again when you find the effects of winds, since the wind data would

include this extra atmospheric rotation.)

People have used wind and pressure (and ocean current) data to estimate the effects of

the atmosphere and oceans on the seasonal lod variations. The agreement is remarkable

(after first removing the 6 month and 1 year tidal effects). In fact, the atmosphere (and,

to a far lesser extent, the oceans) appear to cause essentially all of the observed short-

period (less than 5 years), non-tidal lod variations. These include a 2 year term, a 50

day term, and irregular fluctuations associated with the El Niño event in the Southern

Pacific.

9.4 Wobble

The observed wobble spectrum is much simpler than the lod spectrum. There is some

evidence of a linear drift of the rotation pole with respect to the earth’s surface (maybe

3 or 4 milli-arc-seconds/year). This has been interpreted as due to post-glacial rebound.

The idea is that as material flows into the region beneath Hudson Bay, the earth’s inertia

tensor changes, and that causes the pole to move. Interpreted in this way, the linear drift

provides a good constraint on the lower mantle viscosity. On the other hand, present-day

melting of ice in Greenland or Antarctica could also have important contributions to the

observed polar drift, as could tectonic effects (i.e. mantle convection).

There is also evidence of a long period wobble, with about a 30 year period. The

amplitude is on the order of 30 milli-arc-seconds. Nobody knows what is causing this

motion.
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9.4.1 Annual Wobble

Otherwise, there are just two features in the wobble spectrum that are obviously signifi-

cant: a 12 month term and a 14 month term. The 12 month “annual wobble” is mostly

caused by an annual variation in the inertia tensor of the atmosphere. To conserve an-

gular momentum of the earth/atmosphere system, the rotation axis shifts in response to

the inertia tensor perturbation. The amplitude of the annual wobble is approximately

0.1 arc-seconds of motion of the pole with respect to the earth. That translates to about

3 meters of displacement at the earth’s surface.

You can estimate this effect from atmospheric pressure data. You find that most of

the contributions come from the pressure variations associated with the Asian monsoon:

high pressure (more mass) over Asia in winter, low pressure (less mass) in summer.

This pressure-related effect is responsible for most, but not all, of the annual wobble.

An additional 25% of the observed amplitude is evidently due to seasonal variations in

the distribution of water: in snow and ice, in the water table, in rivers and lakes, and

in the ocean. These variations in water storage can cause perturbations in the inertia

tensor at seasonal periods. Their contributions are hard to evaluate, so the estimate of

25% is only approximate.

The effects of winds and ocean currents on wobble are apparently negligible. Why are

the effects of pressure dominant for the annual wobble, while being relatively unimportant

for the annual variation in the lod? To explain the answer, we need to to consider the

possible coupling mechanisms that can act between between the atmosphere and the

solid earth. The only way the atmosphere can cause either wobble or fluctuations in the

lod, is through friction or mountain torques. Mountain torques can act on any surface

topographic feature, including on the earth’s enormous elliptical bulge (remember that

the earth’s equatorial radius is approximately 20 km larger than its polar radius). There

can thus be pressure torques acting against this bulge. But, the axis of symmetry for

the ellipse is the earth’s mean rotation axis. Thus, the pressure torque in Figure 9.4 can

cause wobble, but not variations in the lod. It turns out that the effects of this pressure

torque are exactly equivalent to the effects of a change in the atmospheric inertia tensor.
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Or, perhaps more clearly, you can think of the atmospheric effects on wobble as either:

(
change in inertia tensor

(inferred from pressure data)

)
+

(
change in angular

momentum of winds

)

or

(elliptical bulge torque) +




other mountain torques
+

friction torque


 .

The inertia tensor and elliptical bulge contributions are equivalent; and the wind and

“other mountain torques and friction torque” contributions are equivalent. The elliptical

bulge torque dominates, and so the pressure effects are much larger than the wind effects.

Because there is no elliptical bulge torque along the polar axis, the pressure effects on

the lod are much less important.

9.4.2 Chandler wobble

The 14 month term is called the Chandler wobble, after the man who discovered it

around 1890. It is a normal mode of the earth. It is analogous to the free nutation of a

top. And, just as for a top, the period depends on the earth’s rotation rate (Ω), and on

how non-spherical the earth is. The relevant parameter describing the earth’s aspherical
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shape is (C − A)/A, where C and A are the polar and equatorial moments of inertia,

respectively. For the earth, (C − A)/A ≈ 1/300, and so the expected period would be

about 300 days (frequency = Ω(C − A)/A ≈ 10 months).

Instead, Chandler found a 14 month (about 430 day) period. The four-month dis-

crepancy is due to deformation inside the earth caused by the change in the centrifugal

force associated with the wobble. There are also effects from the fluid core and from the

oceans which tend to cancel: the oceans increase the period by 1 month, and the core

decreases it by 1 month.

The Chandler wobble period, and the observed Chandler wobble damping time of

approximately several decades, are now well modeled. In fact, the observations have

been used to estimate the effects of mantle anelasticity at a period of 14 months.

But people don’t yet know what excites the Chandler wobble. Atmospheric and

oceanic effects appear to provide no more than about 25% of the necessary power.

Earthquakes (which perturb the inertia tensor) provide less than 10%. People have

hypothesized that pressure torques on the mantle due to the fluid core might be a viable

excitation mechanism, though it is very difficult to assess this idea quantitatively. Other

mechanisms for core/mantle torques (such as electro-magnetic coupling) don’t appear to

be important.

9.5 Nutations and Precession

These are caused by the gravitational attraction of the sun and moon. The sun and

moon torque the earth, as shown in Figure 9.5, through their gravitational force on the

earth’s elliptical bulge. Because the earth is rotating, it responds to that torque as a top

would: it moves out of the page. In fact, the rotation axis precesses about the earth-moon

vector. But the earth-moon vector changes its orientation as the moon orbits the earth.

So the precession occurs about a moving axis. You can think of the resulting motion

of the rotation axis as a precession about the normal to the ecliptic (the ecliptic is the

plane of the moon’s orbit) plus a series of higher frequency wiggles due to the motion
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of the moon (and sun). The precession is called the precession of the equinoxes. It has

an angular amplitude of 23.5◦, and a period of 26,000 years as seen from inertial space.

The wiggles are called nutations. They have inertial space periods equal to the orbital

periods of the sun and moon: 13.7 days, 27.6 days, 6 months, 1 year, 18.6 years, etc. The

18.6 year motion is the largest: about 20 arc-seconds (or 1/2 km) motion of the rotation

axis. The other nutation terms have much smaller amplitudes. For example, the 6 month

term has an amplitude of about 1 arc-second, which is equivalent to ≈ 30 m of motion

at the earth’s surface.

This motion is long period as seen from space, but it is diurnal as seen from points

fixed on the earth. For example, the annual nutation appears from the earth to have

periods of (1 + (1/365)) cycles/day and (1− (1/365)) cycles/day (an annual modulation

of 1 cycle/day gives two frequencies).

What makes the nutations interesting from a geophysical perspective, is that the earth

has a normal mode, called the free core nutation, with a nearly diurnal eigenfrequency. I

briefly described this mode when discussing earth tides on a rotating, elliptical earth (see

Section 8.3.3.3). The situation for nutations is similar to that for earth tides. Namely,

the nutation amplitudes are resonant at the free core nutation eigenfrequency. The eigen-
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frequency depends on the ellipticity of the core-mantle boundary. If the earth was hydro-

statically pre-stressed, so that the boundary ellipticity was equal to the value predicted

by solving Clairaut’s equation, then the nutations would be resonant at (1 + (1/460)) cy-

cles/day (the free core nutation eigenfrequency for the hydrostatic case). However, the

nutation observations show that the resonance actually occurs at a frequency closer to

(1 + (1/430)) cycles/day, a result consistent with the conclusions from earth tide studies.

The difference between the observed resonance and the hydrostatic prediction, suggests

that the core-mantle boundary ellipticity is about 10% larger than the hydrostatic value.

This corresponds to about 1/2 km of non-hydrostatic Y 0
2 boundary topography.
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